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INTRODUCTION



PROGRAM OF DAY 1

® 13:00 - 15:00: Theoretical session 1
- Theoretical background on stochastic processes

- Gillespie algorithm

® 15:00-15:20: Break
® 15:20-17:00: Practical session 1

- Implementation of the Gillespie algorithm and exercises



PROGRAM OF DAY 2

® 14:00 - 16:00: Theoretical session 2
- Lewis’ thinning algorithm
- 7-leaping algorithm

® 16:00 - 16:20: Break

® 16:20 - 18:00: Practical session 2

- Implementation of the 7-leaping algorithm and exercises



OVERVIEW OF THE ALGORITHMS T0 BE STUDIED

* Gillespie algorithm (continuous-time simulation):

a standard method used to simulate continuous-time Markov chains with
constant rates. This algorithm generates exact realisations of the system
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®* Lewis’ thinning algorithm:

a modified version of the Gillespie algorithm suitable for systems with time-
dependent rates.
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* r-leaping algorithm:

an approximate method based on the Gillespie algorithm. This algorithm
works in discrete-time and allows for a more efficient simulation in larger

systems.
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PRACTICAL SESSIONS

®* A worksheet with exercises will be uploaded to the workshop event website.

® Results will be shown at the end of the session.

®* We will use Python for our explanations.



THEORETICAL BACKGROUND



DETERMINISTIC VS STOCHASTIC PROCESSES

Deterministic and Stochastic population growth
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e Deterministic systems:
- No randomness is involved.
- Each realisation is the same (i.e., each run gives the same output).

- Typically described by an ODE system.
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e Stochastic systems:
- Randomness cannot be ignored
- Each realisation is different (i.e., each run gives a different output).

- Their description depends on the type of stochasticity.
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®* Randomness can be present extrinsically (i.e., given by external factors).

- Example: environmental fluctuations such as variations in temperature,
pressure, drug concentrations, etc.
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® Randomness can be present intrinsically, i.e., randomness is an inherent
property of the system.

- Example: mutations, cell duplication, cell death, etc.
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BRANCHING PROCESSES

® Stochastic processes describing the reproductive dynamics of a population at
the level of individual transitions
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DISCRETE-TIME: GALTON-WATSON PROCESS
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* Three properties define a Galton-Watson process:

* All individuals are of a single type with identical offspring distribution.

* Individuals reproduce independently of each other.

* The offspring distribution is the same in every generation.



®* Numerical simulation of Galton-Watson processes:

1. Initialise the system with X, = x, at ¢ = 0.

2. Calculate offspring: Draw an independent random number for each individual i
present in generation ¢, i.e.,

re for i=1,2.....X;

3. Next generation: Sum these random numbers to calculate the number of individuals
in the next generation, i.e., t + 1:
Xt

Xt+1=Z7°7;

i=1
4. Update time fromtor+ 1.

5. Goto 2.



nb_sim = 100 X; vst
nb_gen = 5
RO = 1.5 z P
c
inf_hist = np.zeros((nb_sim, nb_gen)) :% n -
for i in range(nb_sim): §‘
nb_inf =1 - 15 -
inf_hist[i, @] = nb_inf §
for j in range(1l, nb_gen): c
nb_secondary_cases = np.random.poisson(R@, nb_inf) ¢y 10 -
nb_inf = np.sum(nb_secondary_cases) o
inf_hist[i, j] = nb_inf 5 . ~ -
mean_inf = np.mean(inf_hist, axis=0) é é" ;E’EE-:’:"’:"
for i in range(nb_sim): Z - e —
plt.plot(range(nb_gen), inf_hist[i, :], alpha=0.2) v - T . T
plt.plot(range(nb_gen), mean_inf, "r—-") 0 1 2 3 4

plt.show() Generations (t)
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FIGURE 3

Proportion of simulated epidemics that lead to a cumulative incidence between 1,000 and 9,700 of the 2019 novel
coronavirus outbreak, China, on 18 January 2020
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CONTINUOUS-TIME

®* Many phenomena happen in continuous time.

® Events do not occur at fixed time intervals.

I OC

®* Simulations need to estimate the time of the next event, and which event
will trigger.



Stochastic Simulation
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* |tis common to express the different events involved as chemical reactions:
Vi
X —Y
v; is the per-capita (per-cell, per-individual) rate of the reaction

 The total rate of the reaction (or propensity) is the sum of y; over the population
size of X

U; = 7Y " NX

a; is the probability per unit time that any cell of type X undertakes the reaction

e The probability that the reaction occurs during the next Af units of time is:

P = CLz‘At



TYPICAL EXAMPLES OF REACTIONS

¢ Birth events
O — O
¢ Death events
0— X

* Immigration

) — O

ap =b-nx
ag =d-ny
A, = UV



e Mutations

mutation through the offspring

O — O

X2 x4y

Amut = Nx -0

direct mutation

O—0



® Switching environments

Two environments: g = () g =1
. . A_ W
Environmental states E_ switch between them: Fy — Ey Loy — B
| | | X 2% X+ X
Each environment ¢ determines a birth rate 5 and a death rate d_: )
X =
Increasing switching rate
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e Catastrophes
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EXAMPLE 1: MUTATIONS

birth-death process for §:
mutation:

birth-death process for A:
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EXAMPLE 2: BRUSSELATOR ———

species X
| species Y
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WHICH QUANTITIES CAN WE ESTIMATE FROM NUMERICAL SIMULATIONS?
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RELEVANT QUANTITIES

e Probability distribution function: probability of having n individuals at time ¢
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* Expected value
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e Extinction probability: probability of having zero individuals at time ¢

Pext (t) = P(X(t) = 0)

o Ultimate extinction probability: probability of having zero individuals as time
tends to infinity

4 — llIIl Pext (t)

{— 0O

e Expected extinction time: expected time at which the population goes extinct

<text>



* Fixation probability: probability that a particular allele will eventually reach a
frequency equal to 1

o simulations
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* Sojourn time: time the system spent in a particular space leaving it
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WHY DO WE NEED TO RESORT TO STOCHASTIC SIMULATIONS?

* Analytical calculations may be hard

¢

\ / atP(nS,TLA,TLB,nD,t) :bS(’rLS—:_)(1_,UA—/LB)P(’TLS—l,TLA,TLB,nD,t)
¢ @ ¢ + bspans +ba(1 — up)(na — 1)|P(ns,na — 1,np,np,t)
N S bsppns +bp(l = pa)(np = DIP(ng, na,np = 1,np, 1)
@ + [bappna +bpuanp +bp(np — 1)|P(ns,na,np,np — 1,1)
/ . e \ +dg(nsg +1)P(nsg +1,na,ng,np,t) +da(na +1)P(ng,na + 1,ng,np,t)
T dB(nB -+ 1)P(n57nA7nB - 17nD7t) T dD(nD + 1)P(n5'7nA7nB)nD - 17t)
¥ N — (bs(l —pa —puB) +ds)ns + (ba(l — pp) +da)na

@ ¢ + (bp(1 — pa) +dp)ng + (bp +dp)np|P(ns,na,np,np,1t)



* Numerical simulations allow us to verifty our theoretical predictions
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® Stochastic simulations are, in general, easy to implement

-l we can test the system dynamics before making hard calculations



RANDOM NUMBERS

® Relevant distributions:

>>> 1mport numpy as np

Uniform distribution between 0 and 1

F(x)

b—a

X ~ U(0,1)

>>> np.random.uniform(a, b, size)



- Exponential distribution

1.50 |- N — 0.5
1.25 F _ii;
X ~ Exp()\)
§0.75\
o - o P 0.50 |
Pz = IP(X B $) = A¢ 0.25 K
0.00 | | | .
>>> np.random.exponential (1/lambda, size) oo
- Poisson distribution
0.40 — ; - . .
. 0351 1 :ijl :
X ~ Poisson(\) o0 | o A—10 -
&?025' .
)\376—)\ 020}

015 F

.CIZ" 0.10 F

0.05
>>> np.random.poisson(lambda, size) 0.00




APPLICATIONS OF THE
GILLESPIE ALGORITHM




DRUG RESISTANCE

®* Consider a population with sensitive cells $ and mutant cells A.

® Each strain undertakes a birth-death process. Mutations occur through the
offspring.
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® Simulation using the Gillespie algorithm:

1. Initialise the system with ng = nyand n, = 0 attime 1 = 0.

5
2. Update every propensity a; and the sum a, = Z a..

i=1
3. Draw a random number 7 ~ Exp(q,). Update time to 7 + 7.

a.
4. Draw a random number r ~ U(0,1) and execute reaction i with probability —.
4o

5. Goto 2.



®* How to choose the next reaction that triggers?

-
4. Draw a random number r ~ U(0,1) and execute reaction i with probability —.
4o
4 .
_ It 0 <r < —:execute reaction 1 —— ng — Ng + 1
4o
a a, + a .
Cf—<r< : execute reaction 2 —> ng —>ng—1
4o 4o
a, +da a,+a,+a
Y2 <r< L2 . execute reaction 3 e nas—nag+1
do do
a; + a, + dy a;+a,+dz+da, .
_If <r< : execute reaction 4 —> ngq4—nyg+1
4o 4o

a;+a,+dz+da, .
_f < r < 1: execute reaction 5 —_— na—nag— 1
do




population size vs time
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BIRTH-DEATH PROCESS + SWITCHING ENVIRONMENT

®* Consider a population undertaking a birth-death process.

® Consider an external switching environment E_ of two states 6 = 0 and 6 = 1.

The environments switch atrates A, and 4

EA >\_> Eq Eq A

> B

® Birth and death rates depend on the current environment: b_and d_.



Environment o = 0

bo,

/ n
do,

)\_l_. Environment o = 1 ‘)\—

b

y ©» 00 |

O = 0

® Letus assume by > b, and d, = d,sothatby—dy>0and b, —d; <0

®* How can we simulate this system using the Gillespie algorithm?



if o = 0:

ifo=1:

reactions

1. X 2o

3. E

4. X 24

6. F1

At

X+ X

d
— (!

A_

>E1

X+ X

> B

propensities

alznx-bo

CLQ:TLX'dQ

&3:)\_|_

as = nyx - by

as = Nnx - dj
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® Simulation using the Gillespie algorithm:

1. Initialise the system with ny = ny,and o6 = 0 attime r = 0.

3
2. If 0 =0, update propensities a; fori = 1,2,3 and the sum q, = Z a..
i=1

Draw a random number 7 ~ Exp(q,). Update time to 7 + 7.
d

Draw a random number r ~ U(0,1) and execute reaction i with probability —
o

fori = 1,2.,3.



6
It 6 = 1, update propensities a; for i = 4,5,6 and the sum a, = Z a..
=4

Draw a random number 7 ~ Exp(q,). Update time to 7 + 7.

a.-
Draw a random number r ~ U(0,1) and execute reaction i with probability —
o

fori = 4,5.6.

3. Goto 2.
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