Workshop Day 2 - Introduction and motivations

Why do we need other methods?

Gillespie \heartsuit

Gillespie \heartsuit

- 1. Time-dependent rates (Lewis thinning)
- 2. Large population sizes (τ -leaping)
- 3. Applications
- 4. Exercises

If rates are time-dependent (e.g. environmental variation), propensities are a_i(x, t)

- If rates are time-dependent (e.g. environmental variation), propensities are a_i(x, t)
 - For example, birth rate vary through time: $a_1(x, t) = b(t)x(t)$

- If rates are time-dependent (e.g. environmental variation), propensities are a_i(x, t)
 - For example, birth rate vary through time: $a_1(x, t) = b(t)x(t)$
- The Gillespie algorithm is not suitable because the rates can change during the waiting time.

- If rates are time-dependent (e.g. environmental variation), propensities are a_i(x, t)
 - For example, birth rate vary through time: $a_1(x, t) = b(t)x(t)$
- The Gillespie algorithm is not suitable because the rates can change during the waiting time.
- But is it still possible to derive an exact method?

 $p(\tau, i)dt$ = nothing happens in $(t, t + \tau)$ and i occurs in $(t + \tau, t + \tau + dt)$

 $p(\tau, i)dt = \text{nothing happens in } (t, t + \tau)$ and i occurs in $(t + \tau, t + \tau + dt)$ $p(\tau, i) = e^{-a_0} \times a_i$

$$p(\tau, i)dt = \text{nothing happens in } (t, t + \tau)$$

and i occurs in $(t + \tau, t + \tau + dt)$

$$p(\tau, i) = \prod_{i} e^{-\int_{t}^{t+\tau} a_{i}(s)ds} \times a_{i}(t + \tau)$$

 $p(\tau, i)dt = \text{nothing happens in } (t, t + \tau)$ **and** i occurs in $(t + \tau, t + \tau + dt)$ $p(\tau, i) = e^{-\sum_{i} \int_{t}^{t+\tau} a_{i}(s)ds} \times a_{i}(t + \tau)$

 $p(\tau, i)dt = \text{nothing happens in } (t, t + \tau)$ **and** i occurs in $(t + \tau, t + \tau + dt)$ $p(\tau, i) = e^{-\int_{t}^{t+\tau} \sum_{i} a_{i}(s)ds} \times a_{i}(t + \tau)$

 $p(\tau, i)dt = \text{nothing happens in } (t, t + \tau)$ **and** i occurs in $(t + \tau, t + \tau + dt)$ $p(\tau, i) = e^{-\int_{t}^{t+\tau} a_{0}(s)ds} \times a_{i}(t + \tau)$

$$p(\tau, i)dt = \text{nothing happens in } (t, t + \tau)$$

and i occurs in $(t + \tau, t + \tau + dt)$

$$p(\tau, i) = e^{-\int_{t}^{t+\tau} a_{0}(s)ds} \times a_{i}(t + \tau)$$

$$e^{-\int_t^{t+\tau} a_0(s)ds} = P(\tau > u)$$

$$p(\tau, i)dt = \text{nothing happens in } (t, t + \tau)$$

and i occurs in $(t + \tau, t + \tau + dt)$

$$p(\tau, i) = e^{-\int_{t}^{t+\tau} a_{0}(s)ds} \times a_{i}(t + \tau)$$

$$e^{-\int_t^{t+\tau} a_0(s)ds} = 1 - P(\tau < u)$$

$$p(\tau, i)dt = \text{nothing happens in } (t, t + \tau)$$

and i occurs in $(t + \tau, t + \tau + dt)$

$$p(\tau, i) = e^{-\int_{t}^{t+\tau} a_{0}(s)ds} \times a_{i}(t + \tau)$$

$$e^{-\int_t^{t+\tau} a_0(s)ds} = 1 - F(u)$$

$$p(\tau, i)dt = \text{nothing happens in } (t, t + \tau)$$

and i occurs in $(t + \tau, t + \tau + dt)$
$$p(\tau, i) = e^{-\int_{t}^{t+\tau} a_{0}(s)ds} \times a_{i}(t + \tau)$$

$$1 - e^{-\int_t^{t+\tau} a_0(s)ds} = F(u)$$

$$p(\tau, i)dt = \text{nothing happens in } (t, t + \tau)$$

and i occurs in $(t + \tau, t + \tau + dt)$

$$p(\tau, i) = e^{-\int_{t}^{t+\tau} a_{0}(s)ds} \times a_{i}(t + \tau)$$

$$r \sim \mathcal{U}(0,1)$$
; $F(\tau) = r \iff 1 - e^{-\int_t^{t+\tau} a_0(s)ds} = r$

$$p(\tau, i)dt = \text{nothing happens in } (t, t + \tau)$$

and i occurs in $(t + \tau, t + \tau + dt)$

$$p(\tau, i) = e^{-\int_{t}^{t+\tau} a_{0}(s)ds} \times a_{i}(t + \tau)$$

$$r \sim \mathcal{U}(0,1)$$
; $F(\tau) = r \iff \int_{t}^{t+\tau} a_0(s) ds = \ln\left(\frac{1}{r}\right)$

$$p(\tau, i)dt = \text{nothing happens in } (t, t + \tau)$$

and i occurs in $(t + \tau, t + \tau + dt)$

$$p(\tau, i) = e^{-\int_{t}^{t+\tau} a_{0}(s)ds} \times a_{i}(t + \tau)$$

$$r \sim \mathcal{U}(0,1)$$
 ; $F(\tau) = r \iff \int_{t}^{t+\tau} a_0(s) ds = \ln\left(\frac{1}{r}\right)$

• If $a_0(t)$ is integrable, or if one has a numerical expression, then it is possible to generalize the Gillespie algorithm. But it can be extremely time consuming. And the time increases with the number of reactions.

$$p(\tau, i)dt = \text{nothing happens in } (t, t + \tau)$$

and i occurs in $(t + \tau, t + \tau + dt)$

$$p(\tau, i) = e^{-\int_{t}^{t+\tau} a_{0}(s)ds} \times a_{i}(t + \tau)$$

$$r \sim \mathcal{U}(0,1)$$
 ; $F(\tau) = r \iff \int_{t}^{t+\tau} a_0(s) ds = \ln\left(\frac{1}{r}\right)$

- If $a_0(t)$ is integrable, or if one has a numerical expression, then it is possible to generalize the Gillespie algorithm. But it can be extremely time consuming. And the time increases with the number of reactions.
- It is also possible to construct exact time-dependent methods by modifying the First-Reaction Method.

1. Initialize the time $t = t_0$ and the system's state $x = x_0$

- 1. Initialize the time $t = t_0$ and the system's state $x = x_0$
- 2. With the system in state *x* at time *t*, generate a random value $r \sim \mathcal{U}(0, 1)$ and compute τ using $\int_{t}^{t+\tau} a_0(s) ds = \ln(\frac{1}{r})$

- 1. Initialize the time $t = t_0$ and the system's state $x = x_0$
- 2. With the system in state *x* at time *t*, generate a random value $r \sim \mathcal{U}(0, 1)$ and compute τ using $\int_{t}^{t+\tau} a_0(s) ds = \ln(\frac{1}{r})$
- 3. Generate a random value for *i* using the distribution $\frac{a_i(x,t+\tau)}{a_0(x,t+\tau)}$

- 1. Initialize the time $t = t_0$ and the system's state $x = x_0$
- 2. With the system in state *x* at time *t*, generate a random value $r \sim \mathcal{U}(0, 1)$ and compute τ using $\int_{t}^{t+\tau} a_0(s) ds = \ln(\frac{1}{r})$
- 3. Generate a random value for *i* using the distribution $\frac{a_i(x,t+\tau)}{a_0(x,t+\tau)}$
- 4. Update $t \leftarrow t + \tau$ and x according to i

- 1. Initialize the time $t = t_0$ and the system's state $x = x_0$
- 2. With the system in state *x* at time *t*, generate a random value $r \sim \mathcal{U}(0, 1)$ and compute τ using $\int_{t}^{t+\tau} a_0(s) ds = \ln(\frac{1}{r})$
- 3. Generate a random value for *i* using the distribution $\frac{a_i(x,t+\tau)}{a_0(x,t+\tau)}$
- 4. Update $t \leftarrow t + \tau$ and x according to i
- 5. Save (x, t) as desired and return to Step 2, or else end the simulation

SIMULATION OF NONHOMOGENEOUS POISSON PROCESSES BY THINNING

P. A. W. Lewis*

Naval Postgraduate School Monterey, California

G. S. Shedler

IBM Research Laboratory San Jose, California ► The main problem of the temporal Gillespie algorithm is the difficulty to integrate $\int_t^{t+\tau} a_0(s) ds$

- ► The main problem of the temporal Gillespie algorithm is the difficulty to integrate $\int_t^{t+\tau} a_0(s) ds$
- ► The trick here is to find an upper bound of $a_0(s)$: $\bar{a}_0 \ge a_0(s) \quad \forall s \ge t$ and sample the waiting time via $\tau \sim \text{Exp}(\bar{a}_0)$

- ► The main problem of the temporal Gillespie algorithm is the difficulty to integrate $\int_t^{t+\tau} a_0(s) ds$
- ► The trick here is to find an upper bound of $a_0(s)$: $\bar{a}_0 \ge a_0(s) \quad \forall s \ge t$ and sample the waiting time via $\tau \sim \text{Exp}(\bar{a}_0)$
- It means that we are updating time more frequently than we should: sometimes, no reaction should occur

- ► The main problem of the temporal Gillespie algorithm is the difficulty to integrate $\int_t^{t+\tau} a_0(s) ds$
- ► The trick here is to find an upper bound of $a_0(s)$: $\bar{a}_0 \ge a_0(s) \quad \forall s \ge t$ and sample the waiting time via $\tau \sim \text{Exp}(\bar{a}_0)$
- It means that we are updating time more frequently than we should: sometimes, no reaction should occur
- One can prove that if we discard every update with probability 1 - ^{a₀(t+τ)}/_{ā₀}, then this method actually sample from the joint distribution p(τ, i)

An example with a single reaction

Here we assume that the propensity $\lambda(t) = 1 + \sin(t)$ does not depend on the system state x

An example with a single reaction

Now, the propensity $\lambda(t)$ depends on the system state x

1. Initialize the time $t = t_0$ and the system's state $x = x_0$.

- 1. Initialize the time $t = t_0$ and the system's state $x = x_0$.
- With the system in state *x* at time *t*, for each reaction, find a constant which is always larger than its propensity

 ā_i ≥ a_i(x, s) ∀s ≥ t

- 1. Initialize the time $t = t_0$ and the system's state $x = x_0$.
- With the system in state *x* at time *t*, for each reaction, find a constant which is always larger than its propensity

 ā_i ≥ a_i(x, s) ∀s ≥ t
- 3. Compute the sum $\bar{a}_0 = \sum_i \bar{a}_i$

- 1. Initialize the time $t = t_0$ and the system's state $x = x_0$.
- 2. With the system in state x at time t, for each reaction, find a constant which is always larger than its propensity $\bar{a}_i \ge a_i(x, s) \quad \forall s \ge t$
- 3. Compute the sum $\bar{a}_0 = \sum_i \bar{a}_i$
- 4. Generate a random value for τ using an exponential distribution with parameter \bar{a}_0

- 1. Initialize the time $t = t_0$ and the system's state $x = x_0$.
- 2. With the system in state x at time t, for each reaction, find a constant which is always larger than its propensity $\bar{a}_i \ge a_i(x, s) \quad \forall s \ge t$
- 3. Compute the sum $\bar{a}_0 = \sum_i \bar{a}_i$
- 4. Generate a random value for τ using an exponential distribution with parameter \bar{a}_0
- 5. Evaluate all the propensities at time $(t + \tau)$: $a_i(x, t + \tau)$

- 1. Initialize the time $t = t_0$ and the system's state $x = x_0$.
- 2. With the system in state x at time t, for each reaction, find a constant which is always larger than its propensity $\bar{a}_i \ge a_i(x, s) \quad \forall s \ge t$
- 3. Compute the sum $\bar{a}_0 = \sum_i \bar{a}_i$
- 4. Generate a random value for τ using an exponential distribution with parameter \bar{a}_0
- 5. Evaluate all the propensities at time $(t + \tau)$: $a_i(x, t + \tau)$
- 6. Generate a random value for *i* using the distribution $\frac{a_i(x,t+\tau)}{\bar{a}_0}$

- 1. Initialize the time $t = t_0$ and the system's state $x = x_0$.
- 2. With the system in state x at time t, for each reaction, find a constant which is always larger than its propensity $\bar{a}_i \ge a_i(x, s) \quad \forall s \ge t$
- 3. Compute the sum $\bar{a}_0 = \sum_i \bar{a}_i$
- 4. Generate a random value for τ using an exponential distribution with parameter \bar{a}_0
- 5. Evaluate all the propensities at time $(t + \tau)$: $a_i(x, t + \tau)$
- 6. Generate a random value for *i* using the distribution $\frac{a_i(x,t+\tau)}{\bar{a}_0}$
- 7. Update $t \leftarrow t + \tau$ and x according to i

- 1. Initialize the time $t = t_0$ and the system's state $x = x_0$.
- 2. With the system in state x at time t, for each reaction, find a constant which is always larger than its propensity $\bar{a}_i \ge a_i(x, s) \quad \forall s \ge t$
- 3. Compute the sum $\bar{a}_0 = \sum_i \bar{a}_i$
- 4. Generate a random value for τ using an exponential distribution with parameter \bar{a}_0
- 5. Evaluate all the propensities at time $(t + \tau)$: $a_i(x, t + \tau)$
- 6. Generate a random value for *i* using the distribution $\frac{a_i(x,t+\tau)}{\bar{a}_0}$
- 7. Update $t \leftarrow t + \tau$ and x according to i
- 8. Save (x, t) as desired and return to Step 2, or else end the simulation

 Alternatively, one can use the *τ*-leaping method: consider that in a small time interval of size *τ*, the rates are constant.

- Alternatively, one can use the *τ*-leaping method: consider that in a small time interval of size *τ*, the rates are constant.
- Λ Not the same τ

- Alternatively, one can use the *τ*-leaping method: consider that in a small time interval of size *τ*, the rates are constant.
- $\underline{\wedge}$ Not the same τ
- *τ*-leaping has other interesting properties, especially for large populations.

A method is exact if it is derived without approximation from the fundamental premise of stochastic kinetics *a_idt*.

- A method is exact if it is derived without approximation from the fundamental premise of stochastic kinetics a_idt.
- The probability of generating a given trajectory with an exact method is exactly the probability that would come out of the solution of the master / Kolmogorov forward equation.

- A method is exact if it is derived without approximation from the fundamental premise of stochastic kinetics *a_idt*.
- The probability of generating a given trajectory with an exact method is exactly the probability that would come out of the solution of the master / Kolmogorov forward equation.
- However, exact methods are usually slow for large dimensions and/or when the transitions occur very often (large population sizes for example). One transition at a time.

Logical structure of stochastic kinetics

