
Workshop Day 2 - Introduction and motivations

Why do we need other methods? 2

Gillespie ♥

1. Time-dependent rates (Lewis thinning)

2. Large population sizes (τ-leaping)

3. Applications

4. Exercises

Why do we need other methods? 2

Gillespie ♥

1. Time-dependent rates (Lewis thinning)

2. Large population sizes (τ-leaping)

3. Applications

4. Exercises

Time-dependent rates 3

Ï If rates are time-dependent (e.g. environmental variation),
propensities are ai (x, t)

Ï For example, birth rate vary through time:
a1(x, t) = b(t)x(t)

Ï The Gillespie algorithm is not suitable because the rates can
change during the waiting time.

Ï But is it still possible to derive an exact method?

Time-dependent rates 3

Ï If rates are time-dependent (e.g. environmental variation),
propensities are ai (x, t)

Ï For example, birth rate vary through time:
a1(x, t) = b(t)x(t)

Ï The Gillespie algorithm is not suitable because the rates can
change during the waiting time.

Ï But is it still possible to derive an exact method?

Time-dependent rates 3

Ï If rates are time-dependent (e.g. environmental variation),
propensities are ai (x, t)

Ï For example, birth rate vary through time:
a1(x, t) = b(t)x(t)

Ï The Gillespie algorithm is not suitable because the rates can
change during the waiting time.

Ï But is it still possible to derive an exact method?

Time-dependent rates 3

Ï If rates are time-dependent (e.g. environmental variation),
propensities are ai (x, t)

Ï For example, birth rate vary through time:
a1(x, t) = b(t)x(t)

Ï The Gillespie algorithm is not suitable because the rates can
change during the waiting time.

Ï But is it still possible to derive an exact method?

Temporal Gillespie algorithm 4

p(τ, i)d t = nothing happens in (t , t +τ)

and i occurs in (t +τ, t +τ+d t)

Ï If a0(t) is integrable, or if one has a numerical expression, then
it is possible to generalize the Gillespie algorithm. But it can be
extremely time consuming. And the time increases with the
number of reactions.

Ï It is also possible to construct exact time-dependent methods
by modifying the First-Reaction Method.

Temporal Gillespie algorithm 4

p(τ, i)d t = nothing happens in (t , t +τ)

and i occurs in (t +τ, t +τ+d t)

p(τ, i) = e−a0 ×ai

Ï If a0(t) is integrable, or if one has a numerical expression, then
it is possible to generalize the Gillespie algorithm. But it can be
extremely time consuming. And the time increases with the
number of reactions.

Ï It is also possible to construct exact time-dependent methods
by modifying the First-Reaction Method.

Temporal Gillespie algorithm 4

p(τ, i)d t = nothing happens in (t , t +τ)

and i occurs in (t +τ, t +τ+d t)

p(τ, i) =∏
i

e−
∫ t+τ

t ai (s)d s ×ai (t +τ)

Ï If a0(t) is integrable, or if one has a numerical expression, then
it is possible to generalize the Gillespie algorithm. But it can be
extremely time consuming. And the time increases with the
number of reactions.

Ï It is also possible to construct exact time-dependent methods
by modifying the First-Reaction Method.

Temporal Gillespie algorithm 4

p(τ, i)d t = nothing happens in (t , t +τ)

and i occurs in (t +τ, t +τ+d t)

p(τ, i) = e−
∑

i

∫ t+τ
t ai (s)d s ×ai (t +τ)

Ï If a0(t) is integrable, or if one has a numerical expression, then
it is possible to generalize the Gillespie algorithm. But it can be
extremely time consuming. And the time increases with the
number of reactions.

Ï It is also possible to construct exact time-dependent methods
by modifying the First-Reaction Method.

Temporal Gillespie algorithm 4

p(τ, i)d t = nothing happens in (t , t +τ)

and i occurs in (t +τ, t +τ+d t)

p(τ, i) = e−
∫ t+τ

t

∑
i ai (s)d s ×ai (t +τ)

Ï If a0(t) is integrable, or if one has a numerical expression, then
it is possible to generalize the Gillespie algorithm. But it can be
extremely time consuming. And the time increases with the
number of reactions.

Ï It is also possible to construct exact time-dependent methods
by modifying the First-Reaction Method.

Temporal Gillespie algorithm 4

p(τ, i)d t = nothing happens in (t , t +τ)

and i occurs in (t +τ, t +τ+d t)

p(τ, i) = e−
∫ t+τ

t a0(s)d s ×ai (t +τ)

Ï If a0(t) is integrable, or if one has a numerical expression, then
it is possible to generalize the Gillespie algorithm. But it can be
extremely time consuming. And the time increases with the
number of reactions.

Ï It is also possible to construct exact time-dependent methods
by modifying the First-Reaction Method.

Temporal Gillespie algorithm 4

p(τ, i)d t = nothing happens in (t , t +τ)

and i occurs in (t +τ, t +τ+d t)

p(τ, i) = e−
∫ t+τ

t a0(s)d s ×ai (t +τ)

e−
∫ t+τ

t a0(s)d s = P (τ> u)

Ï If a0(t) is integrable, or if one has a numerical expression, then
it is possible to generalize the Gillespie algorithm. But it can be
extremely time consuming. And the time increases with the
number of reactions.

Ï It is also possible to construct exact time-dependent methods
by modifying the First-Reaction Method.

Temporal Gillespie algorithm 4

p(τ, i)d t = nothing happens in (t , t +τ)

and i occurs in (t +τ, t +τ+d t)

p(τ, i) = e−
∫ t+τ

t a0(s)d s ×ai (t +τ)

e−
∫ t+τ

t a0(s)d s = 1−P (τ< u)

Ï If a0(t) is integrable, or if one has a numerical expression, then
it is possible to generalize the Gillespie algorithm. But it can be
extremely time consuming. And the time increases with the
number of reactions.

Ï It is also possible to construct exact time-dependent methods
by modifying the First-Reaction Method.

Temporal Gillespie algorithm 4

p(τ, i)d t = nothing happens in (t , t +τ)

and i occurs in (t +τ, t +τ+d t)

p(τ, i) = e−
∫ t+τ

t a0(s)d s ×ai (t +τ)

e−
∫ t+τ

t a0(s)d s = 1−F (u)

Ï If a0(t) is integrable, or if one has a numerical expression, then
it is possible to generalize the Gillespie algorithm. But it can be
extremely time consuming. And the time increases with the
number of reactions.

Ï It is also possible to construct exact time-dependent methods
by modifying the First-Reaction Method.

Temporal Gillespie algorithm 4

p(τ, i)d t = nothing happens in (t , t +τ)

and i occurs in (t +τ, t +τ+d t)

p(τ, i) = e−
∫ t+τ

t a0(s)d s ×ai (t +τ)

1−e−
∫ t+τ

t a0(s)d s = F (u)

Ï If a0(t) is integrable, or if one has a numerical expression, then
it is possible to generalize the Gillespie algorithm. But it can be
extremely time consuming. And the time increases with the
number of reactions.

Ï It is also possible to construct exact time-dependent methods
by modifying the First-Reaction Method.

Temporal Gillespie algorithm 4

p(τ, i)d t = nothing happens in (t , t +τ)

and i occurs in (t +τ, t +τ+d t)

p(τ, i) = e−
∫ t+τ

t a0(s)d s ×ai (t +τ)

r ∼U (0,1) ; F (τ) = r ⇐⇒ 1−e−
∫ t+τ

t a0(s)d s = r

Ï If a0(t) is integrable, or if one has a numerical expression, then
it is possible to generalize the Gillespie algorithm. But it can be
extremely time consuming. And the time increases with the
number of reactions.

Ï It is also possible to construct exact time-dependent methods
by modifying the First-Reaction Method.

Temporal Gillespie algorithm 4

p(τ, i)d t = nothing happens in (t , t +τ)

and i occurs in (t +τ, t +τ+d t)

p(τ, i) = e−
∫ t+τ

t a0(s)d s ×ai (t +τ)

r ∼U (0,1) ; F (τ) = r ⇐⇒ −
∫ t+τ

t
a0(s)d s = ln

(
1

r

)

Ï If a0(t) is integrable, or if one has a numerical expression, then
it is possible to generalize the Gillespie algorithm. But it can be
extremely time consuming. And the time increases with the
number of reactions.

Ï It is also possible to construct exact time-dependent methods
by modifying the First-Reaction Method.

Ernesto Berrios

Temporal Gillespie algorithm 4

p(τ, i)d t = nothing happens in (t , t +τ)

and i occurs in (t +τ, t +τ+d t)

p(τ, i) = e−
∫ t+τ

t a0(s)d s ×ai (t +τ)

r ∼U (0,1) ; F (τ) = r ⇐⇒ −
∫ t+τ

t
a0(s)d s = ln

(
1

r

)
Ï If a0(t) is integrable, or if one has a numerical expression, then

it is possible to generalize the Gillespie algorithm. But it can be
extremely time consuming. And the time increases with the
number of reactions.

Ï It is also possible to construct exact time-dependent methods
by modifying the First-Reaction Method.

Ernesto Berrios

Ernesto Berrios

Temporal Gillespie algorithm 4

p(τ, i)d t = nothing happens in (t , t +τ)

and i occurs in (t +τ, t +τ+d t)

p(τ, i) = e−
∫ t+τ

t a0(s)d s ×ai (t +τ)

r ∼U (0,1) ; F (τ) = r ⇐⇒ −
∫ t+τ

t
a0(s)d s = ln

(
1

r

)
Ï If a0(t) is integrable, or if one has a numerical expression, then

it is possible to generalize the Gillespie algorithm. But it can be
extremely time consuming. And the time increases with the
number of reactions.

Ï It is also possible to construct exact time-dependent methods
by modifying the First-Reaction Method.

Ernesto Berrios

Summary: The Temporal Gillespie algorithm 5

1. Initialize the time t = t0 and the system’s state x=x0

2. With the system in state x at time t , generate a random value
r ∼U (0,1) and compute τ using −∫ t+τ

t a0(s)d s = ln
(1

r

)
3. Generate a random value for i using the distribution ai (x,t+τ)

a0(x,t+τ)

4. Update t ← t +τ and x according to i

5. Save (x, t) as desired and return to Step 2, or else end the
simulation

Summary: The Temporal Gillespie algorithm 5

1. Initialize the time t = t0 and the system’s state x=x0

2. With the system in state x at time t , generate a random value
r ∼U (0,1) and compute τ using −∫ t+τ

t a0(s)d s = ln
(1

r

)

3. Generate a random value for i using the distribution ai (x,t+τ)
a0(x,t+τ)

4. Update t ← t +τ and x according to i

5. Save (x, t) as desired and return to Step 2, or else end the
simulation

Ernesto Berrios

Summary: The Temporal Gillespie algorithm 5

1. Initialize the time t = t0 and the system’s state x=x0

2. With the system in state x at time t , generate a random value
r ∼U (0,1) and compute τ using −∫ t+τ

t a0(s)d s = ln
(1

r

)
3. Generate a random value for i using the distribution ai (x,t+τ)

a0(x,t+τ)

4. Update t ← t +τ and x according to i

5. Save (x, t) as desired and return to Step 2, or else end the
simulation

Ernesto Berrios

Summary: The Temporal Gillespie algorithm 5

1. Initialize the time t = t0 and the system’s state x=x0

2. With the system in state x at time t , generate a random value
r ∼U (0,1) and compute τ using −∫ t+τ

t a0(s)d s = ln
(1

r

)
3. Generate a random value for i using the distribution ai (x,t+τ)

a0(x,t+τ)

4. Update t ← t +τ and x according to i

5. Save (x, t) as desired and return to Step 2, or else end the
simulation

Ernesto Berrios

Summary: The Temporal Gillespie algorithm 5

1. Initialize the time t = t0 and the system’s state x=x0

2. With the system in state x at time t , generate a random value
r ∼U (0,1) and compute τ using −∫ t+τ

t a0(s)d s = ln
(1

r

)
3. Generate a random value for i using the distribution ai (x,t+τ)

a0(x,t+τ)

4. Update t ← t +τ and x according to i

5. Save (x, t) as desired and return to Step 2, or else end the
simulation

Ernesto Berrios

Lewis thinning algorithm (1978) 6

Lewis thinning algorithm 7

Ï The main problem of the temporal Gillespie algorithm is the
difficulty to integrate

∫ t+τ
t a0(s)d s

Ï The trick here is to find an upper bound of a0(s):
ā0 ≥ a0(s) ∀s ≥ t
and sample the waiting time via τ∼ Exp(ā0)

Ï It means that we are updating time more frequently than we
should: sometimes, no reaction should occur

Ï One can prove that if we discard every update with probability
1− a0(t+τ)

ā0
, then this method actually sample from the joint

distribution p(τ, i)

Lewis thinning algorithm 7

Ï The main problem of the temporal Gillespie algorithm is the
difficulty to integrate

∫ t+τ
t a0(s)d s

Ï The trick here is to find an upper bound of a0(s):
ā0 ≥ a0(s) ∀s ≥ t
and sample the waiting time via τ∼ Exp(ā0)

Ï It means that we are updating time more frequently than we
should: sometimes, no reaction should occur

Ï One can prove that if we discard every update with probability
1− a0(t+τ)

ā0
, then this method actually sample from the joint

distribution p(τ, i)

Lewis thinning algorithm 7

Ï The main problem of the temporal Gillespie algorithm is the
difficulty to integrate

∫ t+τ
t a0(s)d s

Ï The trick here is to find an upper bound of a0(s):
ā0 ≥ a0(s) ∀s ≥ t
and sample the waiting time via τ∼ Exp(ā0)

Ï It means that we are updating time more frequently than we
should: sometimes, no reaction should occur

Ï One can prove that if we discard every update with probability
1− a0(t+τ)

ā0
, then this method actually sample from the joint

distribution p(τ, i)

Lewis thinning algorithm 7

Ï The main problem of the temporal Gillespie algorithm is the
difficulty to integrate

∫ t+τ
t a0(s)d s

Ï The trick here is to find an upper bound of a0(s):
ā0 ≥ a0(s) ∀s ≥ t
and sample the waiting time via τ∼ Exp(ā0)

Ï It means that we are updating time more frequently than we
should: sometimes, no reaction should occur

Ï One can prove that if we discard every update with probability
1− a0(t+τ)

ā0
, then this method actually sample from the joint

distribution p(τ, i)

An example with a single reaction 8

Here we assume that the propensity λ(t) = 1+ sin(t) does not
depend on the system state x

An example with a single reaction 9

Now, the propensity λ(t) depends on the system state x

Summary: The Lewis thinning algorithm 10

1. Initialize the time t = t0 and the system’s state x=x0.

2. With the system in state x at time t , for each reaction, find a
constant which is always larger than its propensity
āi ≥ ai (x, s) ∀s ≥ t

3. Compute the sum ā0 =∑
i āi

4. Generate a random value for τ using an exponential
distribution with parameter ā0

5. Evaluate all the propensities at time (t +τ): ai (x, t +τ)

6. Generate a random value for i using the distribution ai (x,t+τ)
ā0

7. Update t ← t +τ and x according to i

8. Save (x, t) as desired and return to Step 2, or else end the
simulation

Summary: The Lewis thinning algorithm 10

1. Initialize the time t = t0 and the system’s state x=x0.

2. With the system in state x at time t , for each reaction, find a
constant which is always larger than its propensity
āi ≥ ai (x, s) ∀s ≥ t

3. Compute the sum ā0 =∑
i āi

4. Generate a random value for τ using an exponential
distribution with parameter ā0

5. Evaluate all the propensities at time (t +τ): ai (x, t +τ)

6. Generate a random value for i using the distribution ai (x,t+τ)
ā0

7. Update t ← t +τ and x according to i

8. Save (x, t) as desired and return to Step 2, or else end the
simulation

Summary: The Lewis thinning algorithm 10

1. Initialize the time t = t0 and the system’s state x=x0.

2. With the system in state x at time t , for each reaction, find a
constant which is always larger than its propensity
āi ≥ ai (x, s) ∀s ≥ t

3. Compute the sum ā0 =∑
i āi

4. Generate a random value for τ using an exponential
distribution with parameter ā0

5. Evaluate all the propensities at time (t +τ): ai (x, t +τ)

6. Generate a random value for i using the distribution ai (x,t+τ)
ā0

7. Update t ← t +τ and x according to i

8. Save (x, t) as desired and return to Step 2, or else end the
simulation

Summary: The Lewis thinning algorithm 10

1. Initialize the time t = t0 and the system’s state x=x0.

2. With the system in state x at time t , for each reaction, find a
constant which is always larger than its propensity
āi ≥ ai (x, s) ∀s ≥ t

3. Compute the sum ā0 =∑
i āi

4. Generate a random value for τ using an exponential
distribution with parameter ā0

5. Evaluate all the propensities at time (t +τ): ai (x, t +τ)

6. Generate a random value for i using the distribution ai (x,t+τ)
ā0

7. Update t ← t +τ and x according to i

8. Save (x, t) as desired and return to Step 2, or else end the
simulation

Summary: The Lewis thinning algorithm 10

1. Initialize the time t = t0 and the system’s state x=x0.

2. With the system in state x at time t , for each reaction, find a
constant which is always larger than its propensity
āi ≥ ai (x, s) ∀s ≥ t

3. Compute the sum ā0 =∑
i āi

4. Generate a random value for τ using an exponential
distribution with parameter ā0

5. Evaluate all the propensities at time (t +τ): ai (x, t +τ)

6. Generate a random value for i using the distribution ai (x,t+τ)
ā0

7. Update t ← t +τ and x according to i

8. Save (x, t) as desired and return to Step 2, or else end the
simulation

Summary: The Lewis thinning algorithm 10

1. Initialize the time t = t0 and the system’s state x=x0.

2. With the system in state x at time t , for each reaction, find a
constant which is always larger than its propensity
āi ≥ ai (x, s) ∀s ≥ t

3. Compute the sum ā0 =∑
i āi

4. Generate a random value for τ using an exponential
distribution with parameter ā0

5. Evaluate all the propensities at time (t +τ): ai (x, t +τ)

6. Generate a random value for i using the distribution ai (x,t+τ)
ā0

7. Update t ← t +τ and x according to i

8. Save (x, t) as desired and return to Step 2, or else end the
simulation

Summary: The Lewis thinning algorithm 10

1. Initialize the time t = t0 and the system’s state x=x0.

2. With the system in state x at time t , for each reaction, find a
constant which is always larger than its propensity
āi ≥ ai (x, s) ∀s ≥ t

3. Compute the sum ā0 =∑
i āi

4. Generate a random value for τ using an exponential
distribution with parameter ā0

5. Evaluate all the propensities at time (t +τ): ai (x, t +τ)

6. Generate a random value for i using the distribution ai (x,t+τ)
ā0

7. Update t ← t +τ and x according to i

8. Save (x, t) as desired and return to Step 2, or else end the
simulation

Summary: The Lewis thinning algorithm 10

1. Initialize the time t = t0 and the system’s state x=x0.

2. With the system in state x at time t , for each reaction, find a
constant which is always larger than its propensity
āi ≥ ai (x, s) ∀s ≥ t

3. Compute the sum ā0 =∑
i āi

4. Generate a random value for τ using an exponential
distribution with parameter ā0

5. Evaluate all the propensities at time (t +τ): ai (x, t +τ)

6. Generate a random value for i using the distribution ai (x,t+τ)
ā0

7. Update t ← t +τ and x according to i

8. Save (x, t) as desired and return to Step 2, or else end the
simulation

τ-leaping method 11

Ï Alternatively, one can use the τ-leaping method: consider that
in a small time interval of size τ, the rates are constant.

Ï "Not the same τ

Ï τ-leaping has other interesting properties, especially for large
populations.

τ-leaping method 11

Ï Alternatively, one can use the τ-leaping method: consider that
in a small time interval of size τ, the rates are constant.

Ï "Not the same τ

Ï τ-leaping has other interesting properties, especially for large
populations.

τ-leaping method 11

Ï Alternatively, one can use the τ-leaping method: consider that
in a small time interval of size τ, the rates are constant.

Ï "Not the same τ

Ï τ-leaping has other interesting properties, especially for large
populations.

Exact vs inexact methods 12

Ï A method is exact if it is derived without approximation from
the fundamental premise of stochastic kinetics ai d t .

Ï The probability of generating a given trajectory with an exact
method is exactly the probability that would come out of the
solution of the master / Kolmogorov forward equation.

Ï However, exact methods are usually slow for large dimensions
and/or when the transitions occur very often (large population
sizes for example). One transition at a time.

Exact vs inexact methods 12

Ï A method is exact if it is derived without approximation from
the fundamental premise of stochastic kinetics ai d t .

Ï The probability of generating a given trajectory with an exact
method is exactly the probability that would come out of the
solution of the master / Kolmogorov forward equation.

Ï However, exact methods are usually slow for large dimensions
and/or when the transitions occur very often (large population
sizes for example). One transition at a time.

Exact vs inexact methods 12

Ï A method is exact if it is derived without approximation from
the fundamental premise of stochastic kinetics ai d t .

Ï The probability of generating a given trajectory with an exact
method is exactly the probability that would come out of the
solution of the master / Kolmogorov forward equation.

Ï However, exact methods are usually slow for large dimensions
and/or when the transitions occur very often (large population
sizes for example). One transition at a time.

Logical structure of stochastic kinetics 13

Fundamental premise
ai d t = probability that reaction i will occur in (t , t +d t)

Tau-leaping
Ki (τ) ∼ Poisson(aiτ)

Gillespie
p(τ, i)

Master/Kolmogorov
dP (t)

d t =QP (t) Discrete and stochastic

Langevin
d x
d t = θx +ση(t)

Continuous and stochastic

ODE
d x
d t = θx

Continuous and deterministic

ai = cst during τ

aiτ≫ 1

η(t) → 0

