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Time-dependent rates 3

Ï If rates are time-dependent (e.g. environmental variation),
propensities are ai (x, t )

Ï For example, birth rate vary through time:
a1(x, t ) = b(t )x(t )

Ï The Gillespie algorithm is not suitable because the rates can
change during the waiting time.

Ï But is it still possible to derive an exact method?
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Temporal Gillespie algorithm 4

p(τ, i )d t = nothing happens in (t , t +τ)

and i occurs in (t +τ, t +τ+d t )

Ï If a0(t ) is integrable, or if one has a numerical expression, then
it is possible to generalize the Gillespie algorithm. But it can be
extremely time consuming. And the time increases with the
number of reactions.

Ï It is also possible to construct exact time-dependent methods
by modifying the First-Reaction Method.
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Summary: The Temporal Gillespie algorithm 5

1. Initialize the time t = t0 and the system’s state x=x0

2. With the system in state x at time t , generate a random value
r ∼U (0,1) and compute τ using −∫ t+τ

t a0(s)d s = ln
( 1

r

)
3. Generate a random value for i using the distribution ai (x,t+τ)

a0(x,t+τ)

4. Update t ← t +τ and x according to i

5. Save (x, t ) as desired and return to Step 2, or else end the
simulation
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Ï The main problem of the temporal Gillespie algorithm is the
difficulty to integrate

∫ t+τ
t a0(s)d s

Ï The trick here is to find an upper bound of a0(s):
ā0 ≥ a0(s) ∀s ≥ t
and sample the waiting time via τ∼ Exp(ā0)

Ï It means that we are updating time more frequently than we
should: sometimes, no reaction should occur

Ï One can prove that if we discard every update with probability
1− a0(t+τ)

ā0
, then this method actually sample from the joint

distribution p(τ, i )
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ā0
, then this method actually sample from the joint

distribution p(τ, i )



An example with a single reaction 8

Here we assume that the propensity λ(t ) = 1+ sin(t ) does not
depend on the system state x
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Summary: The Lewis thinning algorithm 10

1. Initialize the time t = t0 and the system’s state x=x0.

2. With the system in state x at time t , for each reaction, find a
constant which is always larger than its propensity
āi ≥ ai (x, s) ∀s ≥ t

3. Compute the sum ā0 =∑
i āi

4. Generate a random value for τ using an exponential
distribution with parameter ā0

5. Evaluate all the propensities at time (t +τ): ai (x, t +τ)

6. Generate a random value for i using the distribution ai (x,t+τ)
ā0

7. Update t ← t +τ and x according to i

8. Save (x, t ) as desired and return to Step 2, or else end the
simulation
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i āi
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ā0

7. Update t ← t +τ and x according to i

8. Save (x, t ) as desired and return to Step 2, or else end the
simulation



Summary: The Lewis thinning algorithm 10

1. Initialize the time t = t0 and the system’s state x=x0.

2. With the system in state x at time t , for each reaction, find a
constant which is always larger than its propensity
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i āi
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in a small time interval of size τ, the rates are constant.

Ï "Not the same τ

Ï τ-leaping has other interesting properties, especially for large
populations.
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Ï A method is exact if it is derived without approximation from
the fundamental premise of stochastic kinetics ai d t .

Ï The probability of generating a given trajectory with an exact
method is exactly the probability that would come out of the
solution of the master / Kolmogorov forward equation.

Ï However, exact methods are usually slow for large dimensions
and/or when the transitions occur very often (large population
sizes for example). One transition at a time.
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Logical structure of stochastic kinetics 13

Fundamental premise
ai d t = probability that reaction i will occur in (t , t +d t )

Tau-leaping
Ki (τ) ∼ Poisson(aiτ)

Gillespie
p(τ, i )

Master/Kolmogorov
dP (t )

d t =QP (t ) Discrete and stochastic

Langevin
d x
d t = θx +ση(t )

Continuous and stochastic

ODE
d x
d t = θx

Continuous and deterministic

ai = cst during τ

aiτ≫ 1

η(t ) → 0


