Workshop Day 2 - Introduction and motivations
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1. Time-dependent rates (Lewis thinning)
2. Large population sizes (7-leaping)
3. Applications

4. Exercises
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Time-dependent rates

—

» Ifrates are time-dependent (e.g. environmental variation),
propensities are a; (x, f)
> For example, birth rate vary through time:
ai(x, 1) = b()x(1)
» The Gillespie algorithm is not suitable because the rates can
change during the waiting time.

» Butis it still possible to derive an exact method?
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Temporal Gillespie algorithm

p(t,i)dt =nothing happensin (¢, + 1)
andioccursin (t+71,t+7+dt)

Tag(s)ds

pi)=e x a;(t+71)

+T 1
r~0,1) ; F@)=r < f ao(s)ds:ln(;)
t

» If ap(t) is integrable, or if one has a numerical expression, then
it is possible to generalize the Gillespie algorithm. But it can be
extremely time consuming. And the time increases with the
number of reactions.

» It is also possible to construct exact time-dependent methods
by modifying the First-Reaction Method.


Ernesto Berrios
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Summary: The Temporal Gillespie algorithm

1. Initialize the time ¢ = fp and the system’s state = Tg

2. With the system in state x at time ¢, generate a random value
r~(0,1) and compute 7 using [, ap(s)ds=1n(2)

a;(ax,t+71)

3. Generate a random value for i using the distribution W@ D)

4. Update t — t+ 1 and x according to i

5. Save (z, t) as desired and return to Step 2, or else end the
simulation


Ernesto Berrios


Lewis thinning algorithm (1978)

SIMULATION OF NONHOMOGENEOUS POISSON
PROCESSES BY THINNING

P.A W, Lewis*

Naval Postgraduate School
Monterey, California

G. S. Shedler

IBM Research Laboratory
San Jose, California
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Lewis thinning algorithm

» The main problem of the temporal Gillespie algorithm is the
difficulty to integrate [/ " ao(s)ds

» The trick here is to find an upper bound of ay(s):
ag=zap(s) Vs=t
and sample the waiting time via 7 ~ Exp(dap)

» It means that we are updating time more frequently than we
should: sometimes, no reaction should occur

» One can prove that if we discard every update with probability

1- %, then this method actually sample from the joint
distribution p(t, i)



An example with a single reaction

—

Here we assume that the propensity A(t) =1 +sin (#) does not
depend on the system state x
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An example with a single reaction

—

Now, the propensity A(t) depends on the system state x
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Summary: The Lewis thinning algorithm 10

—

1. Initialize the time ¢ = fp and the system’s state « = g.

. With the system in state x at time ¢, for each reaction, find a

constant which is always larger than its propensity
a;=ai(x,s) Vs=t

3. Compute the sum ay =Y ; d;

4. Generate a random value for 7 using an exponential

® N oo

distribution with parameter a

Evaluate all the propensities at time (¢ + 7): a;(x, t + 1)

a;(x,t+71)

Generate a random value for i using the distribution 7

Update ¢ — t+ 7 and « according to i

Save (x, t) as desired and return to Step 2, or else end the
simulation



7-leaping method

» Alternatively, one can use the 7-leaping method: consider that
in a small time interval of size 7, the rates are constant.

11



7-leaping method

» Alternatively, one can use the 7-leaping method: consider that
in a small time interval of size 7, the rates are constant.

» A\ Not the same 7

11



7-leaping method

» Alternatively, one can use the 7-leaping method: consider that
in a small time interval of size 7, the rates are constant.

» A\ Not the same 7

» 71-leaping has other interesting properties, especially for large
populations.
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Exact vs inexact methods

—

2

| 2

A method is exact if it is derived without approximation from
the fundamental premise of stochastic kinetics a;dt.

The probability of generating a given trajectory with an exact
method is exactly the probability that would come out of the
solution of the master / Kolmogorov forward equation.

However, exact methods are usually slow for large dimensions
and/or when the transitions occur very often (large population
sizes for example). One transition at a time.

12



Logical structure of stochastic kinetics

—

Fundamental premise

a;dt = probability that reaction i will occur in (¢, ¢+ dt)
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“~.a; =cstduring T

N

Master/Kolmogorov
G = QP()

Gillespie Tau-leaping
p(t,1) K; (1) ~ Poisson(a; 1)
3 a;t>1
Y
Langevin

% =0x+on(t)

(6 =0

Ad
ODE
dx _
G =0x
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Discrete and stochastic

Continuous and stochastic

Continuous and deterministic



