Exercise Sheet 2: Applications of the τ -leaping algorithm Workshop: "Stochastic simulations in branching process"

Ernesto Berríos-Caro and Félix Geoffroy

1 Single mutations

Consider a population of type S that mutate into a population of type A. Mutations occur through the offspring of S. The corresponding reactions are

1.
$$S \xrightarrow{b_S \cdot (1-\mu_A)} S + S$$

2.
$$S \xrightarrow{d_S} \emptyset$$

3.
$$S \xrightarrow{b_S \cdot \mu_A} S + A$$

4.
$$A \xrightarrow{b_A} A + A$$

5.
$$A \xrightarrow{d_A} \emptyset$$

Simulate this system using the τ -leaping algorithm for parameters $b_S = 1.0, d_S = 0.1, b_A = 1.5, d_A = 0.1, \mu_A = 10^{-7}$, for an initial condition of $n_S = 10^6$ and $n_A = 0$ at time t = 0. Estimate the average number of mutants A at time t = 5. Estimate this number for different values used for τ in the simulation. What would be an appropriate choice of τ for this system?

2 Decaying-dimerizing reaction set

Consider a system composed by the following reactions:

1.
$$S_1 \xrightarrow{c_1} \emptyset$$

$$2. \quad S_1 + S_1 \xrightarrow{c_2} S_2$$

3.
$$S_2 \xrightarrow{c_3} S_1 + S_1$$

4.
$$S_2 \xrightarrow{c_4} S_3$$
.

Simulate this system using the τ -leaping algorithm. Estimate the average of the population sizes of S_1, S_2 and S_3 at time t=20 for parameters $c_1=1, c_2=0.002, c_3=0.5, c_4=0.04$ for an initial condition $n_1=10^5, n_2=n_3=0$ at time t=0.

Hint: for reaction 2, notice that the propensity is $a_2 = c_2 \cdot n_1 \cdot (n_1 - 1)$.

3 Lewis thinning - periodical SIRS model (Optional)

The infection rate is time dependent $\beta(t) = \beta_0(1 + \beta_1 \cos(2\pi t))$. Note that $\beta(t) \leq \beta_0(1 + \beta_1)$ $\forall t$

Implement the above SIRS model with the Lewis thinning algorithm with n = 5000; $\beta_0 = 400$; $\beta_1 = 0.02$; r = 40 and q = 0.5 in $t \in [0, 10]$. Compute the average final number of infected I(t = 10) conditioned on non-extinction, starting with S(0) = N - 1; I(0) = 1; R(0) = 0.