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The Modern Synthesis

EVOLUTION
The Modern Synthesis
e Synthesis of ideas involving
the nature of selection,
iInheritance, and species, that
occurred during 1936-1947

JULIAN HUXLEY, M.A,, D.sC., F.R.S.

e Reconciliation of Mendelian
inheritance with evolution by
natural selection
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Nongenetic
DNA  “Interpretive =~ Phenotype
Machinery”

All living organisms inherit both genetic material and nongenetic
“Interpretative machinery”

A complete evolutionary synthesis should account for both
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(2) NotXpachinery IS genetically determined
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Examples of Nongenetic Inheritance

This is certainly no less remarkable
than if a cow were to give birth to
a calf with a wolf's head”
Linnaeus, 1744

Figure 4.1. Toadflax (Linaria vulgaris) in its normal form (/eft) and “monstrous” peloric
form (right). The peloric form turned out to be an epimutant rather than a genetic
mutant. (Illustrations by James Sowerby, John Innes Historical Collections. Courtesy of

the John Innes Foundation.) Cubas et al. 1999. Nature 401:157-161
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Examples of Nongenetic Inheritance

Allele wdr-5 “causes” increased lifespan
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Greer et al. 2011. Nature 479:365-371
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Allele wdr-5 “causes” increased lifespan
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Genetically wild-type descendants from wdr-5 mutant parents
nevertheless have extended lifespan for several generations.

Greer et al. 2011. Nature 479:365-371



Examples of Nongenetic Inheritance

Some product of allele wdr-5 actually causes increased lifespan
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Examples of Nongenetic Inheritance

Phytophthora sojae
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Examples of Nongenetic Inheritance

Inheritance of Alleles
Parents @ X
2 (=)
% %

Qutob, D. et al. 2013. Nature Communications, 4:1349.

Kasuga, T. & Gijzen, M. 2013. Trends in Microbiology, 21:575-582
Gijzen, M. et al. 2014. Frontiers in Plant Science, 5:1-4

Na, R. & Gijzen, M. 2016. PLoS Pathogens, 12(7: e1005631)



Examples of Nongenetic Inheritance

Inheritance of Alleles Inheritance of Epialleles
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Extended Heredity

Except for cultural evolution in humans, we still don’t have
good examples of adaptations that are underlain by NGl
a. Trait must vary among individuals

b. Trait must be heritable
c. Trait must affect survival and/or reproductive success

Extended Synthesis

Broader notions that somehow natural selection is not the
sole source of adaptive evolution



The Controversy

“...adaptation can arise through both natural selection and internal and
external constructive processes.”

“the ...(generation of adaptation) ... does not rest on selection alone”

“not enough [significance is afforded] to the developmental processes that
create novel variants, contribute to heredity, generate adaptive fit,...”

“Developmental processes play important evolutionary roles as causes of
novel, potentially beneficial, phenotypic variants,...”

Laland et al. 2015. Proc B 282:21051019



The Controversy

“...adaptation can arise through both natural selection and internal and
external constructive processes.”

“the ...(generation of adaptation) ... does not rest on selection alone”

“not enough [significance is afforded] to the developmental processes that
create novel variants, contribute to heredity, generate adaptive fit,...”

“Developmental processes play important evolutionary roles as causes of
novel, potentially beneficial, phenotypic variants,...”

Laland et al. 2015. Proc B 282:21051019

- “If ... adaptive changes in phenotypes induced by external circumstances
were often transmitted to the offspring, this would involve a major change in
outlook.”

- “...0bservations do not require directed mutations, and ... a neo-Darwinian
explanation is more likely...”

- “...allele frequency change caused by natural selection is the only credible
process underlying the evolution of adaptive organismal traits.”

Charlesworth et al. 2017. Proc B. 284:20162864
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lracking lype Frequency

x; = I indicator variable of type i
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Tracklng Type Frequency

x; = I dicato iable of type

r(t+1) —x(t) = —cov]z,w| + E[Ax]

gi(t+1) —q(t) = — — ¢; + E[AIL]
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Drosophila Sex Comb Evolution
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Drosophila Sex Comb Evolution
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Natural selection is not the sole determinant of phenotype

Ahuja & Singh. 2008. Genetics 179:503



Drosophila Sex Comb Evolution
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Drosophila Sex Comb Evolution

1. Development results in biased phenotypic mutation
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Drosophila Sex Comb Evolution

1. Development results in biased phenotypic mutation
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Why Would Blas be Adaptive In
Novel Selective Environments”?
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Does selection for dealing with stress of one kind produce organisms that
respond adaptively to other stresses?
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Telonis-Scott et al. 2006. J Experimental Biol 209:1837



Adaptive Variation Through
Generalized Stress Response”?

Starvation Stress Temperature Stress
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Quantifying Adaptive Variation
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2.Variation is (weakly) adaptive in a novel environment if [E|Aw] is not as
negative as it might otherwise be
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