Let the concept of
eco-evolutionary feedbacks
be functional!

Blake Matthews
Eawag, Switzerland

[Feedbacks are] “One of the chief themes of scientific understanding’
Judson 1980, MacArthur Fellow (“Genius grant”)
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FEEDBACK - the modification of a process by its
results or effects.

ECOLOGICAL FEEDBACK - the modification of an
ecological process by its results or effects.

NO FEEDBACK

dN(t)

Y — B(t) — D(#) @

FEEDBACK

T — (b-d)N(t)




Ecosystem ecology feedbacks
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MECHANISMS AND CONSEQUENCES OF FACILITATION IN PLANT COMMUNITIES
When can positive interactions cause alternative stable
states in ecosystems?

Sonia Kéfi*', Milena Holmgren? and Marten Scheffer®



EVOLUTIONARY FEEDBACK - the modification of
an evolutionary process by its results or effects.

frequency,
or density

Runaway evolution
Inbreeding tolerance
Evolution of cooperation
Niche construction
Parental care

Evolutionary equilibria
Population regulation
Homeostasis

“a runaway process can grind to a halt because positive
feedback might eventually turn negative owing to some feature
of the biological interaction” (Lehtonen and Kokko 2012)



Positive feedbacks in evolutionary biology
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Positive feedback and alternative stable
states in inbreeding, cooperation, sex roles
and other evolutionary processes
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(Received on 9 September 1990, Accepted in revised form on 6 June 1991)

Feedback loops can have a significant impact on biological systems that are evolving
under Darwinian natural selection. Many of the striking and sometimes bizarre
patterns that characterize the evolution of such systems have simple, natural explana-
tions that involve the effects of feedback loops. The two fundamental types of
feedback loops, positive and negative, have effects that are radically different:
negative feedback tends to produce stability and resistance to change; positive
feedback produces instability and even catastrophe. Both types of feedback loops
are important in biological systems, and both can produce chaos, whose mathemati-
cal complexity often produces strange, beautiful and totally unexpected patterns
that have only begun to be explored using the computational capabilities of modern
electronic computers. An understanding of the patterns that can result from the
effects of feedback loops can produce important new insights into the patterns that
mark the evolutionary development of biological systems.
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Niche Construction

THE NEGLECTED PROCESS IN EVOLUTION
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Vicious circles: positive feedback in
major evolutionary and ecological
transitions
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FEEDBACK - the modification of a process by its
results or effects.

ECO-EVOLUTIONARY FEEDBACK - Ecological and

evolutionary change reciprocally influence each other through the same
(or different) traits and ecological variables
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A conceptual model of feedbacks between ecology and evolution

Eco-evolutionary feedback (narrow sense) - “Ecological and evolutionary change
reciprocally influence each other through the same traits and ecological variables”
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Analytical models of feedback between ecology and evolution
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Feedbacks in evolutionary ecology
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External environmental variables
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ABSTRACT: Evolutionary biology and ecology have a strong theoret-
ical underpinning, and this has fostered a variety of modeling ap-
proaches. A major challenge of this theoretical work has been to un-
ravel the tangled feedback loop between ecology and evolution. This
has prompted the development of two main classes of models. While
quantitative genetics models jointly consider the ecological and evo-
lutionary dynamics of a focal population, a separation of timescales
between ecology and evolution is assumed by evolutionary game the-
ory, adaptive dynamics, and inclusive fitness theory. As a result, the-
oretical evolutionary ecology tends to be divided among different
schools of thought, with different toolboxes and motivations. My
aim in this synthesis is to highlight the connections between these
different approaches and clarify the current state of theory in evo-
lutionary ecology. Central to this approach is to make explicit the
dependence on environmental dynamics of the population and evo-
lutionary dynamics, thereby materializing the eco-evolutionary feed-

Introduction

Evolution is rooted in ecology (Hutchinson 1965; McPeek
2017). Natural selection and genetic drift, the two forces

that sort genetic variation, are fundamentally ecological d
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Moving from theory to empirical tests....

“...there is no escaping the complex problem of jointly tracking the entangled
dynamics of the trait distribution and the environmental variables.”
(Lion 2018, AmNat)

Agenda for empiricists:
o identify the evolving traits of interest (both response and effect traits)
o determine their genetic basis
o quantify trait variation and rates of evolution in natural populations
o experimentally test how various ecological factors (i.e. agents of selection)
affect trait evolution (e.g. selection gradients)
m organism density and trait distributions
m environmental conditions modified by organisms (traits, densities,
higher order species interactions)
o test importance of such reciprocal interactions in natural populations



Experimental tests: a tale of three (fishy) feedbacks

Current Biology
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THE MODEL ORGANISM

(Stickleback)
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Do ecosystem effects of adults modify selection pressures on juveniles?

Evolutionary
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Ecological effects of density and lineage
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Do ecosystem effects of adults modify selection pressures on juveniles?
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Total number of surviving juveniles

Survival of juveniles depended more on lineage
than density of adults
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Hybrid performance was environment independent
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Some experimental evidence of eco-evo feedbacks
(likely mediated via effects on prey community composition)

Researchers use model
ecosystems to test how the
evolutionary traits of one
generation of a species can
affect the environment and,
in turn, the next generation.
In this example, tanks are
stocked with sticklebacks
(Gasterosteus aculeatus)
from either Lake Constance
or Lake Geneva.

1,000-litre tank

and algae

-

Altered ecology

Adult fish change their ecosystems in
different ways. Geneva fish, for
example, eat more of the larger prey
and leave more algae growing.

Adult fish removed

Juveniles added

Fish switch

The adults are removed, and the

changes to the ecosystem are measured.

Then, lab-raised juveniles from both the
Geneva and Constance lineages are
introduced, along with hybrids.

Evo effects

With large prey depleted, Geneva
juveniles are at a disadvantage. Other
fish, and especially hybrids, fare better in
the altered ecosystem — perhaps the
effect of selection favouring diversity.



Eco-evolutionary feedbacks in natural
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CONCEPTS & SYNTHESIS

EMPHASIZING NEW IDEAS TO STIMULATE RESEARCH IN ECOLOGY
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Under niche construction: an operational bridge between ecology,
evolution, and ecosystem science
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Abstract. All living organisms modify their biotic and abiotic environment. Niche
construction theory posits that organism-mediated modifications to the environment can
change selection pressures and influence the evolutionary trajectories of natural populations.
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Fig. 1. A Venn diagram showing which modules of biotic (square) and abiotic (circles) entities, which are connected by
evolutionary (dashed lines) and non-evolutionary effects (solid lines), are associated with different major concepts in ecology and
evolution (bounded by labeled shaded boxes). Non-evolutionary effects include organism-mediated effects on both biotic and
abiotic conditions (e.g., ecological effects shown in Fig. 2A), and evolutionary effects include evolutionary responses to selection.
The stars denote effects on the physical state of the abiotic environment, to distinguish ecosystem engineering (yellow box) from
effects on other abiotic conditions (e.g., the chemical environment). The minimum condition for evolution by niche construction to
occur is to have a pathway that starts and ends with an organism (i.e., a niche constructor and a recipient of niche construction),
and has at least two connections with an evolutionary effect beyond the first connection. Starting from the left of each pathway the
red dashed arrow defines where evolution by niche construction has occurred.



