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Motivations

In recent years, great progress has been made in modelling species-rich microbial communities with

tools from disordered systems. These models are based on the assumption that interactions between

different species are chosen at random.

While they allow to reduce parameters to just a few, they cannot encompass information about ecosys-

tem structure. The genericity of their behaviour is therefore uncertain. We investigate a generalization

that combines information about global patterns and a random component modelling unknown interac-

tion details.

The model

The temporal dynamics for the abundances Ni of S interacting species i = 1, . . . , S are modelled with the

generalized Lotka-Volterra equations:
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Ki is the carrying capacity of species i, it models competitive self-regulation within the species.

αij is the effect of species j on species i. We only take pairwise interactions into account.

The interaction matrix is parameterized as the sum of a deterministic structure and a random component:
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the structure matrix µij encodes the modeller’s knowledge about the global interaction patterns.

σ encodes the uncertainty due to the fine-grained details of the interactions.

+

Mapping to effective equations

Using analytical tools from disordered systems, the above equations are equivalent to a set of uncoupled

stochastic differential equations:
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the uncertainty is replaced by a random noise ξi. It has the same statistics for all species.

the relevant features of the community are encompassed by a small set of ’effective functions’ λ such

that:

mλ(t) is the strength of function λ at time t. See §’Species clustering’.

uλ
i is the susceptibility of species i to the function λ.

Because each species reacts differently to changes in function strength, each species is different from the

rest and the dynamics are high-dimensional. However, because the set of functions is small, such collective

dynamics are driven by a low-dimensional set of variables.

Fully specified Our model Fully disordered

Different species Different species Equivalent species

Driven by many quantities Driven by few functions Driven by total biomass only

Approach

Given an ecological network, we construct a model for the evolution of species abundances that embod-

ies the interaction patterns given by the network. We assume that only information about global patterns

is available and that fine-grained details are unknown. We model them through a random uncertainty

component of intensity σ.

We find that the dynamics of the whole system are driven by a few collective degrees of freedom,

stemming from the collective interaction patterns. We call them ’effective functions’, since they play the

same role as ecological functions but don’t necessarily stem from real ecological processes.

Equilibrium distributions

If the disorder σ is below some threshold, the dynamics reach a globally stable fixed point. The Species

Abundance Distribution (SAD) can be caracterized from the knowledge of the effective functions and of σ:
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 if positive (extant species)

0 otherwise (extinct species)

Because ξi are random variables, the abundances of individual species are random. However, aggregated

properties such as the SAD or function strengths mλ are not random and can be predicted.

The following plots compare SADs from numerical simulations to those predicted by the theory (black

curve) for two values of the signal/noise ratio.

The SAD is a simple superposition of a deterministic term stemming from the structure matrix and a

random term stemming from interaction uncertainty. Randomness has the effect of smoothing the SAD,

hence the stronger it is the more structure is washed out.

Species clustering

In our model, effective ’functions’ emerge as linear combinations of the biomasses of each species

mλ(t) =
∑

i

vλ
i Ni(t)

vλ
i is the contribution of species i to function λ, e.g. if vλ

i is the rate of production of some chemical,

then mλ(t) is the total rate of production at the community level.

To reconcile this with the traditional view of communities structured in sets of functional groups, we devise

an algorithm that clusters species based on their contributions to each function. Species in each group

then have a similar ’ecosystem role’.

order

by groups

Once a partitioning into groups C1, . . . , CK is found, the ’effective functions’ can be expressed in terms of

the total biomasses of the groups. The dynamics of the system are then approximately driven by changes

in these coarse-grained biomasses, e.g. changes in individual composition of groups don’t matter as long

as the total abundance of each group remains stable,

Mj(t) =
∑
i∈Cj

Ni(t)

The number K of clusters required for an accurate description of the system is then a measure of its

complexity: the more species can be aggregated into macroscopic groups, the simpler the community is.

Depending on the amount of uncertainty, the model exhibits different dynamical regimes
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