
The basic
principles of

shotgun
metagenomics

(MGX)
Bram van Dijk - MPI Lecture hall -

24-04-2023

Introduction round

Acknowledgements

Kristian Ulrich
(IT, course preparation)

Pauline Buffard
(workshop assistant / guinea pig)

Laura Dijkhuizen

Tina Hauptfeld

Bas Dutilh

Before I even start talking MGX…

Why are MGX “workshops” hard?
Workshops usually have much more of a hands-on feel

but…

MGX is simply too slow for that.

but…

Let’s at least keep it interactive

Insights into microbial evolution….

… if nothing else interferes…

Problems with culturing bacteria in the lab

● Hard to find conditions for cultivation

(super specific conditions for thousands of species)

● Closed systems may be misleading

(who are we to say what does/doesn't interfere?!)

● Spatial structure matters, and culturing interferes with this!

(single isolates growing in circles is not solving this problem…)

How to study microbes in situ?

● What we need, are "snapshots" from natural systems. If you make a lot of

snapshots, you may even compile a movie!

● The most obvious "snapshot" is ofcourse microscopy, but it can only tell you so

much …

● MGX tries to make snapshots of “information” → sensu bioinformatics 1972

Bioinformatics?

● “Modern” definition of bioinformatics: the science of collecting and analysing
complex biological data such as genetic codes

● Historically, the term bioinformatics did not mean what it means today

● Paulien Hogeweg and Ben Hesper coined bioinformatics to refer to the study of
information processes in biotic systems

What this workshop is about (3 goals)
(modern) Bioinformatic skills

(scripting, installing tools, etc.)
Using standard pipelines

(e.g. Anvio)

● Lectures are focussed on basic steps, concepts and nomenclature. This will get you to
the level of a "good collaborator" → you know what you can/can't do with MGX

● The syllabus/practicals are meant as “finger exercises”, knowing how to do the steps,
and are mostly introductory

● Consultancy. I am leaving soon, so get all your questions out . You can email me in the
future, but now is the best time to talk about your data! :)

Workshop overview

● Two morning lectures, today and tomorrow (10-12.30)

> Today will focus on basic principles
> Tomorrow will focus on HGT and how to detect it

● Two afternoon sessions of hands-on stuff.

> Work through the syllabus that helps you get started with MGX
> Try out the xenoseq pipeline for the H/V experimental designs
> Bring your data, ask questions!

Annotation is often the primary focus: 16S

Sporocytophaga

Cellvibrio

Cellulomonas

13

 genomes (mbs) →

reads (~150 bases) →

(amplified) sequencing

contigs (~100 kbs) →

assembly

binning

 bins / MAGs (mbs) →
(metagenome assembled genomes)

read mapping

With shotgun MGX, a lot happens before annotation

14

“Next” generation sequencing

Brief recap of illumina sequencing

1. The DNA fragment is not the read

2. Two adapters allow reading in

both directions

3. Insert is the bit that isn’t sequenced

4. “Quality” → confidence

A fasta file ….

>VH00578:2:AAAJVKHHV:1:1101:27055:9216 1:N:0: TCTTATTA+GGCAACCT
GGGCCGCTGGGCGGCCCCGTGTAGCCTTACTGCTGCGAAGCTTCGAACACCTTGCGGAACTCGGCTTTTTCTTCATCGGTCAGCGGCAGCAGCGGTGCGCGGGCGTTACCGACCTTGAAGCCGGCCAGCTCGGCGCCGTACTTCACTT
TCT
>VH00578:2:AAAJVKHHV:1:1101:32963:9216 1:N:0:TCTTATTA+GGCAACCT
AAGTATGAGTGAGCCCGTTGACAATAGGGTTGTGATATTTTTCTGCTTGATGTTGTATTGGTCCAACTTTTCCTTTAAAGCCTTGCCTGGCATCTGTGGAGTTTGCCCGATGTAACATATTGTCGTTGGCAAGTTCTTCGGGGATAAA
ACT
>VH00578:2:AAAJVKHHV:1:1101:58072:9216 1:N:0:TCTTATTA+GGCAACCT
GTCTGCACATTGCCGGACAAATTGCCAGAACCCTCAGTCCGGTGCCTGATAAAAACAGGAAGCTCCTGATAACCGGCGGAGGGGCGTTCAACGCATTCCTGATTGATACGTTTCACAAAACCTTTCCCGCCGAAATAAAACTACACAT
TCC
>VH00578:2:AAAJVKHHV:1:1101:24499:9235 1:N:0:TCTTATTA+GGCAACCT
CAGTATACCTACACTATCAGCACACCAACGCTTCTCCATTCTCCTCAAACCACTCTCCGCCATCTTAGCAGCCATGCCATTAGCCCAACTGGCCACCGTTGAACTGCAGCTCATCATGCATTGCTGCGACGTTTCATGCCTACTCAAA
CTC
>VH00578:2:AAAJVKHHV:1:1101:28892:9235 1:N:0:TCTTATTA+GGCAACCT
TCATAATAATTCGCAAACTATATCCGGGTAGAGGTCCGGATGTCAACCAAAAATATACACTGTGAGCTGGATCGAACGCATACAATCCGAATTGCAGATTACCACCGGCGATGGCAGGCAGTTTTCCGTACTGTGGAAGCCGCATACA
AAG
>VH00578:2:AAAJVKHHV:1:1101:31240:9235 1:N:0:TCTTATTA+GGCAACCT
GAGTTCGATGCCCTGGACGAGCTGCGCGGCTTCGCCGCCACCCTCGGCCGGCGCCTGGGCGAGATGCATCAGGTGCTCGCCGAGGGCGTGGACGAGCCGGACTTCGCCCCGCGGCGCAGCGGCCCGGCCGATAGCCGCGCCTGGCAGG
AGG
>VH00578:2:AAAJVKHHV:1:1101:48812:9235 1:N:0:TCTTATTA+GGCAACCT
ATCAATGAGGAATTGGGCTGTCAAGAGCCGAGGTTGCGGCCAGGACGGGCCGGAAAAGCTCCGGCGAACGGCCTCGGTCATTGGCGCCCCAACCGGGTGCAGGCACACTCAAATCAGGCCCGGAACGTCTGAAAGGCGACCTCGCACA
TCA
>VH00578:2:AAAJVKHHV:1:1101:21981:9254 1:N:0:TCTTATTA+GGCAACCT
GCCCCACGGATCCGGGCGCCCTCATCGGGCAGGCCCTCCGTGCCCAGGTGGGCGGTCCGAAAGGCGCGTCGCGGCAGGGTTCCGCCCCGGGCGGCGCGGGAGACGAACCGCGAATGACGGTGCTCGGCCGGCTGACCACCGCCCAGAT
CCT

>header sequence

Raw sequencing data: fastq

@VH00578:2:AAAJVKHHV:1:1101:27055:9216 1:N:0:TCTTATTA+GGCAACCT
GGGCCGCTGGGCGGCCCCGTGTAGCCTTACTGCTGCGAAGCTTCGAACACCTTGCGGAACTCGGCTTTTTCTTCATCGGTCAGCGGCAGCAGCGGTGCGCGGGCGTTACCGACCTTGAAGCCGGCCAGCTCGGCGCCGTACTTCACTTTCT
+
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC;CCCCCCCCCCCCCC;CCCCCCC-CCCCC;-CCC
@VH00578:2:AAAJVKHHV:1:1101:32963:9216 1:N:0:TCTTATTA+GGCAACCT
AAGTATGAGTGAGCCCGTTGACAATAGGGTTGTGATATTTTTCTGCTTGATGTTGTATTGGTCCAACTTTTCCTTTAAAGCCTTGCCTGGCATCTGTGGAGTTTGCCCGATGTAACATATTGTCGTTGGCAAGTTCTTCGGGGATAAAACT
+
CCCCCCC;CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC;CCCCCCCCCCCCCCCCCCCCCCCCCC;CCC
@VH00578:2:AAAJVKHHV:1:1101:58072:9216 1:N:0:TCTTATTA+GGCAACCT
GTCTGCACATTGCCGGACAAATTGCCAGAACCCTCAGTCCGGTGCCTGATAAAAACAGGAAGCTCCTGATAACCGGCGGAGGGGCGTTCAACGCATTCCTGATTGATACGTTTCACAAAACCTTTCCCGCCGAAATAAAACTACACATTCC
+
CCCCCCCCC;CCCCCCCCCC-CCC;C;CCCCCCCCCCCCCCCCC;CC;CCCCCCCCCCC
@VH00578:2:AAAJVKHHV:1:1101:24499:9235 1:N:0:TCTTATTA+GGCAACCT
CAGTATACCTACACTATCAGCACACCAACGCTTCTCCATTCTCCTCAAACCACTCTCCGCCATCTTAGCAGCCATGCCATTAGCCCAACTGGCCACCGTTGAACTGCAGCTCATCATGCATTGCTGCGACGTTTCATGCCTACTCAAACTC
…

@header (...) index sequence quality

Fastq → Anvio: “Ready-to-use” pipeline

Anvio is a great tool to do “everything”

https://anvio.org/

Why I won’t get into Anvio
“Doing everything” doesn’t imply “getting all the knowledge”
I want you to know what you’re doing first
It’s not as easy-to-use as advertised
I am not an expert on Anvio

Other tools
MetaWrap, Squeezemeta, MG-Rast (online!), nf-core-MAG

Bash (bourne-again shell)
● Bash is integral to everything you do in the terminal:

ls to list files, cp to copy files, mv to move file, etc.

● You can write a series of these commands in a BASH script

● For example:

#!/bin/bash

echo “Let’s roll a 6-sided die”

generate a random number between 1 and 6
die=$((RANDOM % 6 + 1)) # e.g. if RANDOM is 13, modulo 6 equals 1, plus 1 equals 2

print the result
echo “You threw a $die”

Step 0: bash scripting became easier than ever
$ ls raw_reads_course
5316_AD_run721_CCTCGCAG_S499_L001_R1_001.fastq.gz 5316_AD_run721_CCTCGCAG_S499_L002_R2_001.fastq.gz
5316_BN_run721_TCTTATTA_S530_L002_R1_001.fastq.gz 5316_CX_run721_ACAAAGTG_S565_L001_R2_001.fastq.gz
5316_EB_run722_TGACAACC_S332_L001_R1_001.fastq.gz 5316_EB_run722_TGACAACC_S332_L002_R2_001.fastq.gz
5316_AD_run721_CCTCGCAG_S499_L001_R2_001.fastq.gz 5316_BN_run721_TCTTATTA_S530_L001_R1_001.fastq.gz
5316_BN_run721_TCTTATTA_S530_L002_R2_001.fastq.gz 5316_CX_run721_ACAAAGTG_S565_L002_R1_001.fastq.gz
5316_EB_run722_TGACAACC_S332_L001_R2_001.fastq.gz
5316_AD_run721_CCTCGCAG_S499_L002_R1_001.fastq.gz 5316_BN_run721_TCTTATTA_S530_L001_R2_001.fastq.gz
5316_CX_run721_ACAAAGTG_S565_L001_R1_001.fastq.gz 5316_CX_run721_ACAAAGTG_S565_L002_R2_001.fastq.gz
5316_EB_run722_TGACAACC_S332_L002_R1_001.fastq.gz

$ ls raw_reads_course
5316_AD_run721_CCTCGCAG_S499_L001_R1_001.fastq.gz 5316_AD_run721_CCTCGCAG_S499_L002_R2_001.fastq.gz
5316_BN_run721_TCTTATTA_S530_L002_R1_001.fastq.gz 5316_CX_run721_ACAAAGTG_S565_L001_R2_001.fastq.gz
5316_EB_run722_TGACAACC_S332_L001_R1_001.fastq.gz 5316_EB_run722_TGACAACC_S332_L002_R2_001.fastq.gz
5316_AD_run721_CCTCGCAG_S499_L001_R2_001.fastq.gz 5316_BN_run721_TCTTATTA_S530_L001_R1_001.fastq.gz
5316_BN_run721_TCTTATTA_S530_L002_R2_001.fastq.gz 5316_CX_run721_ACAAAGTG_S565_L002_R1_001.fastq.gz
5316_EB_run722_TGACAACC_S332_L001_R2_001.fastq.gz
5316_AD_run721_CCTCGCAG_S499_L002_R1_001.fastq.gz 5316_BN_run721_TCTTATTA_S530_L001_R2_001.fastq.gz
5316_CX_run721_ACAAAGTG_S565_L001_R1_001.fastq.gz 5316_CX_run721_ACAAAGTG_S565_L002_R2_001.fastq.gz
5316_EB_run722_TGACAACC_S332_L002_R1_001.fastq.gz

Step 1: the “rosetta stone”
Refers to a black basalt stone found in 1799 which is being used to this day to

decipher hieroglyphics

$ ls raw_reads_course
5316_AD_run721_CCTCGCAG_S499_L001_R1_001.fastq.gz 5316_AD_run721_CCTCGCAG_S499_L002_R2_001.fastq.gz
5316_BN_run721_TCTTATTA_S530_L002_R1_001.fastq.gz 5316_CX_run721_ACAAAGTG_S565_L001_R2_001.fastq.gz
5316_EB_run722_TGACAACC_S332_L001_R1_001.fastq.gz 5316_EB_run722_TGACAACC_S332_L002_R2_001.fastq.gz
5316_AD_run721_CCTCGCAG_S499_L001_R2_001.fastq.gz 5316_BN_run721_TCTTATTA_S530_L001_R1_001.fastq.gz
5316_BN_run721_TCTTATTA_S530_L002_R2_001.fastq.gz 5316_CX_run721_ACAAAGTG_S565_L002_R1_001.fastq.gz
5316_EB_run722_TGACAACC_S332_L001_R2_001.fastq.gz
5316_AD_run721_CCTCGCAG_S499_L002_R1_001.fastq.gz 5316_BN_run721_TCTTATTA_S530_L001_R2_001.fastq.gz
5316_CX_run721_ACAAAGTG_S565_L001_R1_001.fastq.gz 5316_CX_run721_ACAAAGTG_S565_L002_R2_001.fastq.gz
5316_EB_run722_TGACAACC_S332_L002_R1_001.fastq.gz

$ cat rosetta_stone.txt
5316_AD T1_C1_7amp_H
5316_BN T2_C1_7amp_H
5316_CX T3_C1_7amp_H
5316_EB Tminus1_C1_powersoil

Step 1: the “rosetta stone”
Pseudo-code of 01_retrieve_data.sh: copy files from the archive to your own directory.

1. Make directory called ‘raw_reads_renamed’

2. Then, go through the rosetta_stone.txt file line by line, doing:

a. Find all file(s) containing “5316_AD” in Wallace’s archive
(or for the workshop, from the ‘raw_reads_course’ directory)

b. Unzip the file(s) to a new directory under the name
“T1_C1_7amp_H.fastq”

c. Go to the next line

Step 1: the “rosetta stone”
(the actual code)

#!/bin/bash

###
MGX_BASICS - Part 1 - Retrieving data from the archive
###

Usually, this path will be emailed to you by Sven, or the company provides these files. E.g. on the archive, this path could be
'/groups/archive/MPGC/project5316/run721'
path_to_fastq_files="raw_reads_course"
dir_renamed_files="raw_reads_renamed"

Make the directory for the new files (-p prevents error when dir already exists)
mkdir -p $dir_renamed_files

The line below is a way to loop over a file line by line
cat rosetta_stone.txt | while read line; do
 # First, extract specific bits of the line (old name, new name)
 old_name=$(echo $line | cut -f1) # First column contains the old name, store in variable
 new_name=$(echo $line | cut -f2) # Second column contains new name, store in variable

 # Print something to the terminal so we know what's going on
 echo "Reads with prefix $old_name will be unzipped and merged under the new name $new_name (fastq for both R1 and R2)" # Echoing the new name.

 # Unzip (zcat) all files corresponding to the old_name into a single file
 zcat $path_to_fastq_files/${old_name}_*R1*.fastq.gz > ${dir_renamed_files}/${new_name}_R1.fastq
 zcat $path_to_fastq_files/${old_name}_*R2*.fastq.gz > ${dir_renamed_files}/${new_name}_R2.fastq
done;

For the workshop → a lot of scripts are already run

Step 2: read trimming: cleaning up raw reads

Trim the poor-quality / poly-G ends:

Remove (remaining) adapters:

Remove PCR duplicates:

Note: sequencing devices or companies often
already do some preliminary cleaning for you!

FastQC/FastP: tools that do all of that

1. Generate nice reports of how good your reads are

2. Don’t expect “perfect” reads, every sequencing technology has a few

consistent things they perform bad at.

→ We’ll look at a fastp report together in a minute

Step 2: read trimming

Let’s take
a look!

Step 2: read “trimming”

@VH00578:2:AAAJVKHHV:1:1101:27055:9216 1:N:0:TCTTATTA+GGCAACCT
GGGCCGCTGGGCGGCCCCGTGTAGCCTTACTGCTGCGAAGCTTCGAACACCTTGCGGAACTCGGCTTTTTCTTCATCGGTCAGCGGCAGCAGCGGTGCGCGGGCGTTACCGACCTTGAAGCCGGCCAGCTCGGCGCCGTACTTCACTTTCT
+
CCC
@VH00578:2:AAAJVKHHV:1:1101:32963:9216 1:N:0:TCTTATTA+GGCAACCT
AAGTATGAGTGAGCCCGTTGACAATAGGGTTGTGATATTTTTCTGCTTGATGTTGTATTGGTCCAACTTTTCCTTTAAAGCCTTGCCTGGCATCTGTGGAGTTTGCCCGATGTAACATATTGTCGTTGGCAAGTTCTTCGGGGATAAAACT
+
CCCCCCC;CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC;CCCCCCCCCCCCCCCCCCCCCCCCCC;CCC
@VH00578:2:AAAJVKHHV:1:1101:58072:9216 1:N:0:TCTTATTA+GGCAACCT
GTCTGCACATTGCCGGACAAATTGCCAGAACCCTCAGTCCGGTGCCTGATAAAAACAGGAAGCTCCTGATAACCGGCGGAGGGGCGTTCAACGCATTCCTGATTGATACGTTTCACAAAACCTTTCCCGCCGAAATAAAACTACACATTCC
+
CCCCCCCCC;CCCCCCCCCC-CCC;C;CCCCCCCCCCCCCCCCC;CC;CCCCCCCCCCC
@VH00578:2:AAAJVKHHV:1:1101:24499:9235 1:N:0:TCTTATTA+GGCAACCT
CAGTATACCTACACTATCAGCACACCAACGCTTCTCCATTCTCCTCAAACCACTCTCCGCCATCTTAGCAGCCATGCCATTAGCCCAACTGGCCACCGTTGAACTGCAGCTCATCATGCATTGCTGCGACGTTTCATGCCTACTCAAACTC
…

Intermezzo:
Did we sample “deep enough”?

How can we tell if we have “enough reads” ?

1. if you are working with an isolate for which you know the expected
genome size, we can calculate this ourselves:

2. however, we often don’t know the genomes size, and we have many
different players. Now what?

Rarefaction: how ecologists or bird watchers
estimate species abundance

observations:

total species
observed:

2 4 76 7 77

to
ta

l s
p

ec
ie

s
o

b
se

rv
ed

:

observations

Rarefaction in metagenomics, how to get “observations”?
to

ta
l r

ea
d

s
o

b
se

rv
ed

:

reads

● However, there are 4150 possible reads … 2.0e+90. (particles in the universe is ~

3.0e+80).

● Reads aren’t random, but still…. less combinations would be better…

● Kmers! 24-mers -> 2.8147498e+14

Rarefaction: hopefully, things flatten out

Translated to MGS: if we had
more reads, we probably would

have “seen more stuff”

This is where it gets interesting

Step 3: assembly of genomes

Two types of assembly: reference-guided and de novo

How to de novo assemble a genome?

The naive approach

How to de novo assemble a genome?

The actual golden standard: de Bruijn Graphs

Why Kmers rather than read alignment?

How to know which paths are connected?

5 contigs
instead of 2 …

Then isn’t greedy
extension better?

Chimeras are a big problem in metagenomix

This venomous creature eats grass and runs 80 km/h

But chimera’s are avoidable!

km
er

 c
ov

Converge: K-mer coverage goes up

Diverge: K-mer coverage goes down

“Wrong” paths: three Kmer coverage patterns

“Correct” paths: two Kmer coverage patterns

Question: under what circumstance do you still get chimeras?

km
er

 c
ov

Good assemblers (megahit, metaspades) take this into account

No matter how hard we try, contigs are still not genomes

Game over for
assembly, we
will get into

“binning” later

Step 3: assembling contigs with megahit
#!/bin/bash

In this script, instead of looping over files, I show how you can write your own function
in BASH. In programming, a function is just a set of instructions that can be repeated with
different inputs. Of course, the other strategy we used in earlier examples (loop over
directories, do something for each) would have worked too, and would essentially have the
same outcome. This is just to illustrate there are different ways to do things :)

read_dir="reads"

assemble() {
 sample=$1 # first argument passed to function is accessed by $1, this is the sample
name
 echo "Now assembling sample $sample..."
 megahit -1 ${read_dir}/${sample}_trimmed_R1.fastq -2
${read_dir}/${sample}_trimmed_R2.fastq -t 8 -o Assembly_${sample}
}

assemble Tminus1_C1_powersoil
assemble T1_C1_7amp_H
assemble T2_C1_7amp_H
assemble T3_C1_7amp_H

Step 3: assembling contigs with megahit

How good is your assembly? (N50, etc.)
● Longer contigs are always good, but simply using “average length”

is a only a crude estimate: we don’t know the expected length, plus
there are plasmids, phages, etc.

● Instead, we can use a metric called N50/L50:

● In principle this works for multiple genomes too: how many
contigs do you need to span 50% of the whole assembly?

N50 = length = 30kb
L50 = number = 5 contigs
(sorry can’t helpt it XD)

Bbstats.sh
$ bbstats.sh 03_Assembly_output/Assembly_Tminus1_C1_powersoil_trimmed/final.contigs.fa -format=7#

AARGH!

● NOTE: These are rough estimates of “quality”,
so only use them to compare your own samples
with each other (e.g. to test which DNA
extraction kit worked better)

Taking a peek at the assembly file
$ head 03_Assembly_output/Assembly_T1_C1_7amp_H_trimmed/final.contigs.fa
>k141_35866 flag=1 multi=3.0000 len=369
GCCATCGAGAGCATCGCGTTTCAAAGCGCCGATCTCCTCGCCGCCATGCAGGCCGACTCG…
>k141_15372 flag=1 multi=2.0000 len=354
CCCTCGTAATTGATGATTTCAGGCGGGTGATGTTCTATCCGAAAGCCATTGCACTGGGCAT…
>k141_0 flag=1 multi=2.0000 len=317
CGCGGCGCCGACCCGACGACATCGAGATATTCGGGAAAGGTTTCCCAGGTCCAGGGAAG…
>k141_5124 flag=1 multi=2.0000 len=456
TACTGTGCTCGGCACCAAGACATCATGTCCCCAGTTGCCGCGTCTCTTGCGGATGCCAGCT…
>k141_30743 flag=1 multi=2.0000 len=395
GGGCTCGCCTTCGTCGCCGAGCAGCTGCTGCCCTACCTGACCGGGCTGGGCGCCGAACCA…
>k141_35963 flag=1 multi=6.0000 len=10346
AGGATGGGGTGATGCAATTGCTTCACGGCGGCGAGCACGTCGGCCTCGCGCGCCGCACGCACGAAGGCGGCGCTCAACGGAAAG
CGGCGGCCGGCGAGGATGGGGTGATGCAATTGCTTCACGGCGGCGAGCACGTCGGCCTCGCGCGCCGCACGCACGAAGGCGGCG
CTCAACGGAAAGCGGCGGCCGGCGAGGATGGGGTGATGCAATTGCTTCACGGCGGCGAGCACGTCGGCCTCGCGCGCCGCACGC
ACGAAGGCGGCGCTCAACGGAAAGCGGCGGCCGGCG …

Read mapping: the swiss army knife of MGX
● “Mapping” is similar to “aligning”, but is more concerned with if/where a small

sequence aligns to a larger sequence (whereas aligning is usually referring to how
two similar sequences compare)

● That said, mapping is technically the same as aligning (it’s just nice to know how
people use it)

● Using read mapping, we can determine “coverage”, but these come in two flavours:

● Depth, average number of reads mapping across the contig (sometimes referred to
as vertical coverage)

● Breadth, the percentage (or fraction) of base pairs covered by at least X reads.

● These statistics can be used as indicators of “abundance”, but we have to be
careful!

Coverage can indicate abundance

depth ~ 40
breadth ~ 1

depth ~ 250 (!)
breadth ~ 0.5 (!)

● NOTE: I strongly advice making claims of absolute abundance (this depends too much on
sampling quality, PCR cycles, biases…)

● NOTE: It would be unfair to conclude that sequence 2 is “more abundant” than sequence 1

● However: situation 2 will not happen when you map back on the sample itself (think about it:
how could it?). With cross-sample comparisons, best practice is to combine breadth/depth. And if
you base your entire analysis on a few contigs, at least check the coverage distributions

Back-mapping
● BWA is a mapping tool that uses burrows-wheeler transforms

● All you need to know now, it that we must first “make” the transformation
matrix, and then read mapping is really fast! (it can map millions of reads
in mere minutes!)

● The output it what is a “binary alignment map” (BAM)

$ bwa index $contigs
$ bwa mem -t 8 $contigs $read_dir/${sample}_trimmed_R1.fastq
$read_dir/${sample}_trimmed_R2.fastq > $output/read_mapping.bam

● The human-readable version of a BAM file is a SAM-file, which stands for
“sequence alignment map”, which is produced by opening a bam-file with
samtools:

$ samtools view read_mapping.bam | head -n 3
VH00578:2:AAAJVKHHV:1:1101:65040:12018 99 k141_29350 2320 60 151M =
2497 328
CTACCGAACACCGCGGCCGTCACTGGCCACGGGGAGAACTTTACGGGGCGCGGTGTGCTGCGGTTCGCGGAAACACGCGGGTTTGAACGCCCTGTTTC
TGGTTCTGGCGCATAAACCGCCGACCGTCACGACTCGCTTTCCTGATCCATCT
CCCCCCCCCCCCCCCCCCCCC;CC
CCCCCCCCCCCCCCCC;CCCCCCCCCCCC;CCCCCCCCCCCCCCCCCCCCCCC NM:i:1 MD:Z:149G1 AS:i:149
XS:i:0
VH00578:2:AAAJVKHHV:1:1101:65040:12018 147 k141_29350 2497 60 151M =
2320 -328
TCCACGGCCGTTTCCGGCGTTTCGTCCGGGCCGATGACGCCATCGCCCCACGCCTCAACGCACTGGGCGTGCGTGAGCCCGGTCCGCTGCTGCAGCAA
CGCAATGAACCGTGCCTTGAAGGCTTCTTGTGCCTGTCTATCCATTCCTGGCC
-CCC
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC;CCCCCCCCCCCCCCCCCC NM:i:0 MD:Z:151 AS:i:151
XS:i:0
VH00578:2:AAAJVKHHV:1:1101:67710:12037 77 * 0 0 * * 0 0
GGCCGGCAGGAGAGTAACTTCCACCCATACCCTCCGTGATCCGCAATTGTGGTCTGTAGAAACGCCGCAATTATACCGGGTAAAAACTACCGTAAAAG
ATAAAAAGACGGGCCGGGTTTGGGAACAGACCACCCACACTTTCGGACTCCGG
CCCCCCCCCC;C;CCC;C;CCCCCCCC;CCCCCCCCC-CC
CCCCCCCC;CCCCCCCCCC;CCCCCCCCCCC;CCCCCC;CCCCCCCCCCCCCC AS:i:0 XS:i:0

Back-mapping: getting depths
$samtools sort read_mapping.bam > read_mapping.sorted.bam

$samtools coverage read_mapping.sorted.bam | head

● Which will give:

#rname startpos endpos numreads covbases coverage meandepth meanbaseq meanmapq
k141_35866 1 369 9 369 100 3.30623 33.4 60
k141_15372 1 354 6 354 100 1.92373 33.7 60
k141_0 1 317 6 317 100 2.50473 33.1 60
k141_5124 1 456 9 456 100 2.83553 33.3 60
k141_30743 1 395 9 395 100 2.51646 33.8 46.7
k141_25620 1 489 10 489 100 2.79755 33.2 60
k141_10248 1 621 18 621 100 4.34944 32.4 60
k141_15373 1 352 7 352 100 2.3892 31.7 60
k141_20496 1 652 10 652 100 1.96933 33.6 60

Binning: the biggest challenge in MGX
● Because of fragmentation of contigs (because of repeats), there will be MANY more

contigs than there are genomes/replicons in your sample

● How can we determine which ones belong to “the same genome”?

Binning with metabat

Now we have “the end product” of MGX

$ls 05_Binning
MAG.1.fa
MAG.2.fa
MAG.3.fa
MAG.4.fa
MAG.lowDepth.fa
MAG.tooShort.fa
MAG.unbinned.fa
metabat_abundance_file.txt

Metagenome-assembled genome (MAG)

Very different from 16s:

Before we annotated ANYTHING we did
a lot of work to get bigger and bigger
collections of DNA, which eventually
gave us what is known as….

Everything we will do from here is
essentially “genomics”

MAGs: what are they?

Not genomes.

How “good” are the MAGs?
$ bbstats.sh MAG.2.fa -format=7
A C G T GC GC_stdev
0.3269 0.1734 0.1728 0.3269 0.3462 0.0097

Main genome contig total: 78
Main genome contig sequence total: 3.096 MB
Main genome contig N/L50: 16/74535
Main genome contig N/L90: 48/19106
Max contig length: 167244
Number of contigs > 1 KB: 78
% main genome in contigs > 1 KB: 100.00%

Minimum Number Total

Contig of Contig

 2772 78 3095686

 10000 62 2998612

 25000 40 2624293

 50000 22 1960566

 100000 6 773507

BBSTATS CHECKM

● Estimates “completion” and “contamination” of
your MAG based on single-copy marker genes

● As always: a good indication but don’t bet your
life on it.

Why are my MAGs so bad?
Many microbial communities have a long-tailed abundance curve:

Strategies for improving MAGs

● Sampling MAGs from many environments and different
conditions (but, dereplication is necessary!)

● Cross-assembly (sometimes co-assembly), which is
simply pooling reads from many samples into one big file,
and assembling the result.

Your computer will need a LOT of RAM if you do this
(sometime terabytes …)

Also: increases risks of chimera’s, so take care !!

● Combine illumina with long-read sequencing technology
(nanopore, etc.) to get high quality genomes

As said: a lot happens before annotation! :)

● Today: trimming, assembly, and binning

● Tomorrow: annotation and detecting horizontal gene transfer

Hands-on part of the workshop

● Option 1: follow instructions in the workshop manual
to get some finger exercises on how to do each step.

Because MGX is not super fast, running the whole suite
will take a while…

● Option 2: study the scripts from option 1 without
running, and go inspect some of the output that was

already run for you at:
/groups/mpistaff/MGX_workshop/MGX_workshop_va

ndijk

● Option 3: talk to me or Pauline about what you could
do with *your* data. Are you stuck? Do you need help

finding a tool? Let us know :)

What to do?

● On Windows you need to either (i) download a terminal
emulator (MobaXterm is my hot tip), or (ii) use our
webvpn service: https://webvpn.evolbio.mpg.de/

● Log into Wallace using ssh
<username>@wallace.evolbiompg.de

● Login to either node01-04 using:
$ ssh node01

● For webvpn users: your sessions may time out after
some time of inactivity. If this happens, try opening up a

‘screen’ after you login to wallace like this:
$ screen

After you timed out (disconnected), you can find your
session like this

$ screen -list

And reconnect like this:
$ screen -r <SESSION_ID>

How do do it?

https://webvpn.evolbio.mpg.de/

PART II
 Annotation and horizontal gene transfer

Let's start with questions

First: Let's copy some files

MAGs from Steven Quistad's compost

MGX: annotation of gene content and function

How do you go from sequence to a “function”?
Prodigal: predicting open reading frames (ORFs)

Prokka: prodigal + annotation

Prokka can be run on any fasta file
$ prokka 05_Binning/MAG.3.fa --prefix 06_Prokka_MAG3

gbk = genbank file

amino-acid sequences of proteins

gff = general-feature format:

The GFF file has a LOT of information in it

Bioinformatics is like Lego®
First, run prokka.

prokka 05_Binning/MAG.2.fa --prefix 06_Prokka_MAG2

Next, I extract the UniProt IDs
grep -o 'UniProt.*' 06_Prokka_MAG2/06_Prokka_MAG2.gff | cut -d';' -f1 |
cut -d':' -f2 | sed 's/^/UNIPROT:/g' > 06_Prokka_MAG2/UniProt_IDs.txt

vertical slash
(or “pipe symbol”)

UniProtKB:P54979;locus_tag=DPBJCFOK_02651;product=zeta-carotene-forming phytoene desaturase
UniProtKB:Q7AKG9;locus_tag=DPBJCFOK_02652;product=ECF RNA polymerase sigma factor SigR
UniProtKB:Q0P9D0;locus_tag=DPBJCFOK_02654;product=Undecaprenyl phosphate N%2CN'-diacetylbacillo
UniProtKB:Q7DBF3;locus_tag=DPBJCFOK_02655;product=GDP-perosamine synthase
UniProtKB:Q7WTB1;locus_tag=DPBJCFOK_02657;product=UDP-glucose 4-epimerase
UniProtKB:Q0P9C9;locus_tag=DPBJCFOK_02659;product=N%2CN'-diacetylbacillosaminyl-diphospho-undec
UniProtKB:Q48485;locus_tag=DPBJCFOK_02662;product=UDP-galactopyranose mutase
UniProtKB:P54420;locus_tag=DPBJCFOK_02664;product=Asparagine synthetase [glutamine-hydrolyzing]
UniProtKB:P54420;locus_tag=DPBJCFOK_02677;product=Asparagine synthetase [glutamine-hydrolyzing]
UniProtKB:G3XD23;locus_tag=DPBJCFOK_02679;product=UDP-N-acetyl-2-amino-2-deoxy-D-glucuronate ox
UniProtKB:G3XD01;locus_tag=DPBJCFOK_02680;product=UDP-2-acetamido-3-amino-2%2C3-dideoxy-D-glucu
UniProtKB:P37744;locus_tag=DPBJCFOK_02681;product=Glucose-1-phosphate thymidylyltransferase 1
UniProtKB:P26391;locus_tag=DPBJCFOK_02682;product=dTDP-glucose 4%2C6-dehydratase
UniProtKB:Q8RDI4;locus_tag=DPBJCFOK_02691;product=Recombination protein RecR
…

UNIPROT:
UNIPROT:
UNIPROT:
UNIPROT:
UNIPROT:
UNIPROT:
UNIPROT:
UNIPROT:
UNIPROT:
UNIPROT:
UNIPROT:
UNIPROT:
UNIPROT:
UNIPROT:

redirect output to a file

iPath3: visualise metabolism with uniprot IDs

Others (web-based) things you could try this afternoon

● Interproscan: protein family and domain prediction

● Antismash: predict secondary metabolite gene clusters

● BlastKOALA: predict KEGG Ontology gene categories

● Phaster: prophage prediction

● ICEberg: integrative element prediction

● And a lot more :)

Contig annotation tool (CAT, not cat)

BAT RAT

CAT + RAT + Krona

RAT is used to estimate the abundances of contigs
(again, this is simply read mapping!)

Then, the results of CAT can be plotted in a
hierarchical diagram, like a Krona plot ←

Metabolic modelling

Predicting the reactions present in MAGs and trying to make models “generate biomass”

Horizontal Gene Transfer

“The walls that divide bacteria from one another are far from solid. Taken to extremes, the preponderance
of HGT could even imply that microbiomes are better conceptualized as collections of locally adaptive
genes, rather than communities of locally adapted species”, – J.P. Hall, 2021

HGT and loss dominate bacterial evolution

“Indeed, the estimated rates of gene family gain and loss in some groups of bacteria are such that
multiple genes appear to come and go over the time required for a single nucleotide substitution to
occur in an evolving gene. ”

The tree of one percent

Tal Dagan:
The prokaryotic tree of life
is a tree of 1% of their genomes…

This changes how we think about
“descent with modification”

Descent with modification still applies, but to who does it apply?
Genes? Bacteria? Groups?

My preferred perspective: to all of them. Selection can act on all these
levels in concert: theory of multi-level evolution

Multi-level evolution simulations

https://docs.google.com/file/d/1xvM91NfWDXhFd3SxnxtZvmTdH3upzOnL/preview

How do detect HGT with MGX?

How do detect HGT with MGX?

Differential read mapping

Trappe et al., 2016

Structural
variants (SVs)

An experimental solution to detect HGT

An experimental solution to detect HGT

How to use xenoseq

#query reference
Community_1_T1 Ancestral_1
Community_1_T2 Ancestral_1
Community_1_T3 Ancestral_1
Community_2_T1 Ancestral_2
Community_2_T2 Ancestral_2
Community_2_T3 Ancestral_2

1. Install xenoseq (or use the one in the workshop-environment)
2. Prepare a “metadata file”:
3. Run: $ xenoseq -m xenoseq_metadata.txt -p reads -r _R*.fastq -l -t -o 08_Xenoseq
4. More help and list of all options: $xenoseq -h

5. If you get stuck, I’ve build in an AI that can help you by sending an email to
bramvandijk88@gmail.com, but it’s pretty slow sometimes … :(

mailto:bramvandijk88@gmail.com

Caution: xenoseq works, but biology is messy
The simulated mock data test: Ampicilin experiments…

Steven’s compost communities:

Limits of MGE detection tools:

Movement of MGEs across communities:
“xenotypic_coverage.txt”

MGX take home messages

● Microbes are “too flexible” to simply assume function based on their annotated

species. It’s time to move beyond 16S / read annotation

● Instead: try to reserve “annotation” for later stages in the process

● Assembly and read mapping is 90% of what you’ll do first

● It can’t be done with 100% computational tools: experimental approaches are

necessary to improve our ability to detect HGT!

Hand-on part of the workshop

● Option 1: follow instructions in the workshop manual
to get some finger exercises on how to do each step.

Because MGX is not super fast, running the whole suite
will take a while…

● Option 2: study the scripts from option 1 without
running, and go inspect some of the output that was

already run for you at:
/groups/mpistaff/MGX_workshop/MGX_workshop_va

ndijk

● Option 3: talk to me or Pauline about what you could
do with *your* data. Are you stuck? Do you need help

finding a tool? Let us know :)

What to do?
● On Windows you need to either (i) download a terminal

emulator (MobaXterm is my hot tip), or (ii) use our
webvpn service: https://webvpn.evolbio.mpg.de/

● Log into Wallace using ssh
<username>@wallace.evolbiompg.de

● For webvpn users: your sessions may time out after
some time of inactivity. If this happens, try opening up a

‘screen’ after you login to wallace like this:
$ screen

After you timed out (disconnected), you can find your
session like this

$ screen -list

And reconnect like this:
$ screen -r <SESSION_ID>

How do do it?

https://webvpn.evolbio.mpg.de/

