Speaker
Description
In insects, increasing evidence shows that epigenetic changes can be passed on to future generations. This is also true for diapause, an environmentally induced state of ‘hibernation’ that is characterised by arrested development and suppressed metabolism. In Lepidoptera there is a strong paternal influence on the diapause decision of the offspring. However, not much is known about the epigenetic control of diapause. In this study we characterized differences in whole-genome methylation (whole-genome bisulfite sequencing) between diapause-destined and directly developing siblings of the butterfly Pieris napi. We reveal marked changes in a number of genes, thereby shedding a first light on the epigenetic control of diapause in this species. Transgenerational inheritance can have a substantial effect on the evolution of diapause, possibly expediting selection on a recurring phenotype.