Mini-Talk + poster
In theory, there are three possible ways a population can adapt to heterogeneous environments: (1) supporting genetic polymorphism on directly genetically determined traits and to distributing individuals-specialists between differential biotopes; (2) equipping individuals with phenotypic plasticity; (3) fixing some generalist genotype effectively functioning under any conditions (Scheiner & Lyman, 1989). Studying the relative importance of these processes in recently diverged species increases our knowledge on mechanisms of speciation. There are three closely related species of rough periwinkles in the North Atlantics: Littorina saxatilis, L. arcana and L. compressa, with the former being accepted as the oldest one (Reid, 1996; Doellman et al., 2011). These species exploit different reproductive strategies: unlike other two egg-laying species, L. saxatilis is ovoviviparous. They leave in sympatry in the intertidal area, however, L. saxatilis range expands to more stressful conditions, e.g. estuaries (Reid, 1996; Granovitch et al., 2004). Moreover, the two younger species occupy a narrow part of vertical shore profile only slightly overlapping with each other (L. compressa prefers lower and L. arcana – upper parts of the shore; Granovitch et al., 2013), fully covered by more broad area of L. saxatilis. Sympatric populations of all three species are characterized by comparable degree of genetic diversity (Doellmann et al., 2011), and those species are very close at the whole-genomic level (Panova et al., 2014). We compared physiological state of snails of all three species inhabiting different shore levels using proteomic and metabolomic analyses. Mating preferences of males were described as a part of behavior. L. saxatilis and L. arcana showed the same patterns: their proteomes and metabolomes were rather similar in terms of qualitative and quantitative characteristics; moreover, they changed in an analogous manner depending on shore level. Males of those two species demonstrated moderate choosiness readily copulating with males and females of both species. L. compressa showed a completely different pattern. Metabolomic and proteomic samples of this species grouped separately from those of L. saxatilis and L. arcana; the degree of intragroup diversity was significantly lower than in two other species; no shore level related variability was detected. Besides, males of L. compressa displayed strong preference for conspecific females. Thus, for some reason among populations of three closely related sister species living together, L. compressa exhibited a rather peculiar – constricted – pattern of functioning. In my presentation I will discuss a number of possible explanations to these remarkable differences. One of speculative conclusions is that key speciation events could be related not only to environmental shifts or niche expansion, but also to changes in a pattern of interaction with the same environment, a shift in a main adaptive strategy. Doellman MM, Trussell GC, Grahame JW, Vollmer SV (2011) Phylogeographic analysis reveals a deep lineage split within North Atlantic Littorina saxatilis. Proceedings of the Royal Society of London B: Biological Sciences 278(1722): 3175-3183. Granovitch AI, Mikhailova NA, Znamenskaya O, Petrova Yu A (2004) Species complex of mollusks of the genus Littorina (Gastropoda: Prosobranchia) from the eastern Murman coast. Zoologicheskij Zhurnal 83(11): 1305–1316. Granovitch AI, Maximovich AN, Avanesyan AV, Starunova ZI, Mikhailova NA (2013) Micro-spatial distribution of two sibling periwinkle species across the intertidal indicates hybrdization. Genetica 141(7-9): 293-301. Panova M, Johansson T, Canbäck B, Bentzer J, Rosenblad MA, Johannesson K, Tunlid A, André C (2014) Species and gene divergence in Littorina snails detected by array comparative genomic hybridization. BMC Genomics 15: 687. Reid DG (1996) Systematics and evolution of Littorina (No. 164). London: Ray Society. Scheiner SM, Lyman RF (1989) The genetics of phenotypic plasticity. I. Heritability. J Evol Biol 2: 25-107.